How to correct the error - ClassificationSVM

조회 수: 11 (최근 30일)
vokoyo
vokoyo 2018년 6월 16일
댓글: Walter Roberson 2023년 4월 25일
My Matlab code -
clear
load fisheriris
% Only use the third and fourth features
x=meas(:,3:4);
gscatter(x(:,1),x(:,2),species);
% Only use the last two categories
x=meas(51:end,3:4);
group=species(51:end,1);
gscatter(x(:,1),x(:,2),group);
% Linear SVM
svmStruct = fitcsvm(x,group,'showplot',true);
% Kernel SVM
svmStruct = fitcsvm(xdata,group,'showplot',true,'kernel_function','rbf');
% Select different sigma
svmStruct = fitcsvm(xdata,group,'showplot',true,'kernel_function','rbf','rbf_sigma',0.5);
But here I get the error message such as below -
Error in fitcsvm (line 316)
obj = ClassificationSVM.fit(X,Y,RemainingArgs{:});
Error in Untitled (line 11)
svmStruct = fitcsvm(x,group,'showplot',true);

채택된 답변

Walter Roberson
Walter Roberson 2018년 6월 16일
편집: Walter Roberson 2018년 6월 16일
svmStruct = fitcsvm(x,group,'HyperparameterOptimizationOptions', struct('showplot',true))
svmStruct = fitcsvm(x,group,'HyperparameterOptimizationOptions', struct('showplot',true), 'KernelFunction','rbf','KernelScale',0.5)
  댓글 수: 1
Walter Roberson
Walter Roberson 2018년 6월 17일
ntry = 10;
kftypes = {'gaussian', 'rbf', 'polynomial'};
nkf = length(kftypes);
svmStructs = cell(ntry,1);
for idx = 1 : ntry
kfidx = randi(nkf);
kftype = kftypes{kfidx};
if ismember(kfidx, [1, 2])
ks = exp(randn());
opts = {'KernelScale', ks};
else
q = randi(20);
opts = {'PolynomialOrder', q}
end
svmStructs{idx} = fitcsvm(x, group, 'HyperparameterOptimizationOptions', struct('showplot',true), 'KernelFunction', kftype, opts{:});
disp(kftype)
celldisp(opts);
pause(2);
end

댓글을 달려면 로그인하십시오.

추가 답변 (5개)

vokoyo
vokoyo 2018년 6월 17일
편집: vokoyo 2018년 6월 17일
Many thanks for your correct solution however can you please provide further suggestion such as how to modify the output diagram based on adjusting the parameters?
(Herewith refer to the attached file)
Thank you again
  댓글 수: 1
Walter Roberson
Walter Roberson 2018년 6월 17일
Try different settings for the KernelFunction https://www.mathworks.com/help/stats/fitcsvm.html#bt9w6j6_sep_shared-KernelFunction and for the KernelScale and see what the effects are.

댓글을 달려면 로그인하십시오.


vokoyo
vokoyo 2018년 6월 17일
편집: vokoyo 2018년 6월 17일
Kindly please help and provide your sample codes as a reference (because this is very important for studies)
After all I am not sure how to perform Matlab programming for Supervised Classification and compare all the results
Here can contact with more detail information - tcynotebook@yahoo.com (my mail)
  댓글 수: 1
Walter Roberson
Walter Roberson 2018년 6월 17일
Students experimenting is very important for studies.

댓글을 달려면 로그인하십시오.


vokoyo
vokoyo 2018년 6월 18일
편집: vokoyo 2018년 6월 18일
This is the Matlab code -
clear
load fisheriris
% Only use the third and fourth features
x=meas(:,3:4);
gscatter(x(:,1),x(:,2),species);
% Only use the last two categories
x=meas(51:end,3:4);
group=species(51:end,1);
gscatter(x(:,1),x(:,2),group);
% Linear SVM
svmStruct = fitcsvm(x,group,'HyperparameterOptimizationOptions', struct('showplot',true))
% Kernel SVM
svmStruct = fitcsvm(x,group,'HyperparameterOptimizationOptions', struct('showplot',true), 'KernelFunction','rbf')
% Select different sigma
svmStruct = fitcsvm(x,group,'HyperparameterOptimizationOptions', struct('showplot',true), 'KernelFunction','rbf','KernelScale',0.1)
ntry = 10;
kftypes = {'gaussian', 'rbf', 'polynomial'};
nkf = length(kftypes);
svmStructs = cell(ntry,1);
for idx = 1 : ntry
kfidx = randi(nkf);
kftype = kftypes{kfidx};
if ismember(kfidx, [1, 2])
ks = exp(randn());
opts = {'KernelScale', ks};
else
q = randi(20);
opts = {'PolynomialOrder', q}
end
svmStructs{idx} = fitcsvm(x, group, 'HyperparameterOptimizationOptions', struct('showplot',true), 'KernelFunction', kftype, opts{:});
disp(kftype)
celldisp(opts);
pause(2);
end
Why the output diagram is the same and not any special result?
(Herewith kindly refer to the attached picture)
  댓글 수: 6
vokoyo
vokoyo 2018년 6월 18일
편집: vokoyo 2018년 6월 18일
The more you write the more problems I get
svm_3d_matlab_vis
Not enough input arguments.
Error in svm_3d_matlab_vis (line 2)
sv = svmStruct.SupportVectors;
I think I need to stop here
Anyhow thank for the first answer
Walter Roberson
Walter Roberson 2018년 6월 18일
It sounds as if you are calling svm_3d_matlab_vis without passing in any parameters.

댓글을 달려면 로그인하십시오.


Don Mathis
Don Mathis 2018년 6월 18일
FITCSVM does not have an argument named 'showplot'. When I run your original code in R2018a I get this:
Error using classreg.learning.FitTemplate/fillIfNeeded (line 612)
showplot is not a valid parameter name.
Error in classreg.learning.FitTemplate.make (line 124)
temp = fillIfNeeded(temp,type);
Error in ClassificationSVM.template (line 235)
temp = classreg.learning.FitTemplate.make('SVM','type','classification',varargin{:});
Error in ClassificationSVM.fit (line 239)
temp = ClassificationSVM.template(varargin{:});
Error in fitcsvm (line 316)
obj = ClassificationSVM.fit(X,Y,RemainingArgs{:});
Error in Untitled3 (line 11)
svmStruct = fitcsvm(x,group,'showplot',true);
  댓글 수: 6
Aishwarya
Aishwarya 2023년 4월 25일
Did you get a solution?

댓글을 달려면 로그인하십시오.


Don Mathis
Don Mathis 2023년 4월 25일
편집: Don Mathis 2023년 4월 25일
svmtrain() was replaced by fitcsvm(), and fitcsvm does not have a 'showplot' argument. Making a 2D plot of data points and support vectors in not built-in to fitcsvm, nor the object that it returns, ClassificationSVM.
If you have a 2D input space and you want to plot points and support vectors, you can see an example of how to do that here: https://www.mathworks.com/help/stats/classificationsvm.html#bt7go4d

카테고리

Help CenterFile Exchange에서 Classification Trees에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by