TreeBagger parameter tuning for classification

조회 수: 6 (최근 30일)
kawther hassine
kawther hassine 2018년 6월 7일
댓글: Marta Caneda Portela 2022년 9월 6일
How can I tune parameters for TreeBagger model for classification, I followed the example:"Tune Random Forest Using Quantile Error and Bayesian Optimization", https://fr.mathworks.com/help/stats/tune-random-forest-using-quantile-error-and-bayesian-optimization.html I only changed "regression" with "classification". The following code generated multiple errors:
results = bayesopt(@(params)oobErrRF(params,X),hyperparametersRF,...
'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
errors:
Error using classreg.learning.internal.table2FitMatrix>resolveName (line 232)
One or more 'ResponseName' parameter values are invalid.
Error in classreg.learning.internal.table2FitMatrix (line 77)
ResponseName = resolveName('ResponseName',ResponseName,FormulaResponseName,false,VarNames);
Error in ClassificationTree.prepareData (line 557)
[X,Y,vrange,wastable,varargin] =
classreg.learning.internal.table2FitMatrix(X,Y,varargin{:},'OrdinalIsCategorical',false);
Error in TreeBagger/init (line 1335)
ClassificationTree.prepareData(x,y,...
Error in TreeBagger (line 615)
bagger = init(bagger,X,Y,makeArgs{:});
Error in oobErrRF2 (line 16)
randomForest = TreeBagger(300,X,'MPG','Method','classification',...
Error in @(params)oobErrRF2(params,trainingDataFeatures)
Error in BayesianOptimization/callObjNormally (line 2184)
Objective = this.ObjectiveFcn(conditionalizeX(this, X));
Error in BayesianOptimization/callObjFcn (line 2145)
= callObjNormally(this, X);
Error in BayesianOptimization/callObjFcn (line 2162)
= callObjFcn(this, X);
Error in BayesianOptimization/performFcnEval (line 2128)
ObjectiveFcnObjectiveEvaluationTime, this] = callObjFcn(this, this.XNext);
Error in BayesianOptimization/run (line 1836)
this = performFcnEval(this);
Error in BayesianOptimization (line 450)
this = run(this);
Error in bayesopt (line 287)
Results = BayesianOptimization(Options);
I would like to know if there is a way to use this method of tuning for classification. If not, how can I tune my parameters for a TreeBagger classifier. Thanks.
  댓글 수: 2
Don Mathis
Don Mathis 2018년 6월 8일
What version of MATLAB are you using? That's not the error I get using R2018a
kawther hassine
kawther hassine 2018년 6월 18일
It's R2017a.

댓글을 달려면 로그인하십시오.

답변 (1개)

Don Mathis
Don Mathis 2018년 6월 8일
The following works for me in R2018a. It predicts 'Cylinders' (3 classes) and it calls oobError to get the misclassification rate of the ensemble.
load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
Model_Year,Weight,MPG);
rng('default'); % For reproducibility
maxMinLS = 20;
minLS = optimizableVariable('minLS',[1,maxMinLS],'Type','integer');
numPTS = optimizableVariable('numPTS',[1,size(X,2)-1],'Type','integer');
hyperparametersRF = [minLS; numPTS];
results = bayesopt(@(params)oobErrRF(params,X),hyperparametersRF,...
'AcquisitionFunctionName','expected-improvement-plus','Verbose',1);
bestOOBErr = results.MinObjective
bestHyperparameters = results.XAtMinObjective
Mdl = TreeBagger(300,X,'Cylinders','Method','classification',...
'MinLeafSize',bestHyperparameters.minLS,...
'NumPredictorstoSample',bestHyperparameters.numPTS);
function oobErr = oobErrRF(params,X)
%oobErrRF Trains random forest and estimates out-of-bag quantile error
% oobErr trains a random forest of 300 regression trees using the
% predictor data in X and the parameter specification in params, and then
% returns the out-of-bag quantile error based on the median. X is a table
% and params is an array of OptimizableVariable objects corresponding to
% the minimum leaf size and number of predictors to sample at each node.
randomForest = TreeBagger(300,X,'Cylinders','Method','classification',...
'OOBPrediction','on','MinLeafSize',params.minLS,...
'NumPredictorstoSample',params.numPTS);
oobErr = oobError(randomForest, 'Mode','ensemble');
end
  댓글 수: 9
Don Mathis
Don Mathis 2018년 6월 26일
>> load networkTraffic.mat
>> proto= categorical(cellstr(proto));
Undefined function or variable 'proto'.
Marta Caneda Portela
Marta Caneda Portela 2022년 9월 6일
What if we need to do kFold validation to optimize hyperparameters?

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Classification Ensembles에 대해 자세히 알아보기

제품


릴리스

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by