how to find maximum value in a matrix?

조회 수: 5 (최근 30일)
kat001
kat001 2018년 5월 31일
댓글: Anton Semechko 2018년 6월 6일
Now, there is reason why I don't want to use a max() or similar built-in function to find the maximum value of a matrix. My question is following:
Imagine, we have a matrix, let's call it 'gauss' and looks like this:
gauss =
0 0.2000 0
0.5000 1.0000 0.6000
0 0.3000 0
What I want is to find the maximum, i.e. 1 or the value at gauss(2,2). I need to automize a step search from gauss(1,1) so that I end up finding gauss(2,2) in this entire matrix.
Would be glad if you could give some idea regarding the coding of the steps.
Thanks!
  댓글 수: 2
Anton Semechko
Anton Semechko 2018년 5월 31일
It is in general not possible to find (global) maximum value of the matrix when performing local steps, from one matrix element to its adjacent neighbours. If you do so, then for any given starting position, the algorithm will converge onto a local maximum, which may or may not be a global maximum.
kat001
kat001 2018년 5월 31일
편집: kat001 2018년 5월 31일
That is correct! However, if you imagine a 2D map of a gaussian profile, where the peak value is in the center of map, then it should be possible to take x number of steps and then y number of steps from a random point on the map until it reaches the peak. Right?

댓글을 달려면 로그인하십시오.

채택된 답변

Anton Semechko
Anton Semechko 2018년 6월 1일
Demo of local search based on 4-connected neighbourhood:
Demo of local search based on 8-connected neighbourhood:
Code used to generate these figures:
function Gauss_map_demo
% Sampling grid
N=30; % grid size
dx=2*rand(1)-1;
dy=2*rand(1)-1;
x=linspace(-2,2,N)+dx;
y=linspace(-2,2,N)+dy;
ds=x(2)-x(1);
[X,Y]=meshgrid(x,y);
% Random precision matrix (inverse of covariance)
t=rand(1)*pi;
R=[cos(t) -sin(t);sin(t) cos(t)];
D=sort((rand(1,2)+1)/2,'descend');
S=R'*diag(1./D)*R;
% Evaluate (zero-centred) Gaussian on specified grid
P=[X(:) Y(:)]';
G=exp(-0.5*sum(P.*(S*P),1));
G=reshape(G,size(X));
% Visualize
figure('color','w')
imagesc([1 N],[1 N],G)
axis equal
set(gca,'XLim',[0 N+1],'YLim',[0 N+1])
hold on
colorbar;
% Identify corner with smallest value as a starting point; this is done for
% demonstration purposes. In practice, you should select corner with
% largest value, as it will reduce number of steps required to reach
% absolute maximum.
ij=[1 1;N 1;N N;1 N]; % corner indices
id=sub2ind([N N],ij(:,1),ij(:,2));
[~,id_min]=min(G(id));
seed=ij(id_min,:);
% Search using on 4-connected neighbourhood
conn=false; % set conn=true to use 8 connected neighbourhood
[G_max,ij_max,trj]=GetMax(G,seed,conn);
fprintf('Maximum value found %.3f at G(%u,%u) in %u steps\n',G_max,ij_max(1),ij_max(2),size(trj,1))
plot(trj(:,2),trj(:,1),'-r','LineWidth',2); % ascent trajectory
plot(trj(1,2),trj(1,1),'ok','LineWidth',3,'MarkerSize',10); % start
plot(trj(end,2),trj(end,1),'xk','LineWidth',3,'MarkerSize',10); % end
function [G_max,ij_max,trj]=GetMax(G,seed,conn)
% Get maximum value of an image using local search
%
% - G : N-by-M image
% - seed : starting point
% - conn : set conn=true to use 8-connected neighbourhood {default},
% and set conn=false to use 4-connected neighbourhood
if nargin<2 || isempty(seed), seed=[1 1]; end
if nargin<3 || isempty(conn), conn=true; end
siz=size(G);
% Initial value
ij_max=seed;
G_max=G(ij_max(1),ij_max(2));
trj=ij_max;
% Neighbour offsets
ngb_x=repmat([-1 0 1],[3 1]);
ngb_y=ngb_x';
d_ij=[ngb_y(:) ngb_x(:)];
if conn
d_ij(5,:)=[];
else
d_ij([1 3 5 7 9],:)=[];
end
% Search
while true
% Indices of neighbours around ij_max
i_ngb=ij_max(1)+d_ij(:,1);
i_ngb=max(min(i_ngb,siz(1)),1);
j_ngb=ij_max(2)+d_ij(:,2);
j_ngb=max(min(j_ngb,siz(2)),1);
id_ngb=sub2ind(siz,i_ngb,j_ngb);
% Select neighbour with largest value; I am using 'max' function here, but you can loop through the neighbouring values if you want
[g_max,id_max]=max(G(id_ngb));
if g_max>G_max
G_max=g_max;
ij_max_new=[i_ngb(id_max) j_ngb(id_max)];
if nargout>2
trj=cat(1,trj,ij_max_new);
end
ij_max=ij_max_new;
else
break
end
end
  댓글 수: 7
kat001
kat001 2018년 6월 6일
So,
ngb_x =
-1 0 1
-1 0 1
-1 0 1
ngb_y =
-1 -1 -1
0 0 0
1 1 1
And then, for example, you are "erasing" linear index number 1, 3, 5, 7 and 9 from ngb_x and ngb_y and to me, it looks like I am getting two vectors, i.e.
d_ij =
-1 0
0 -1
0 1
1 0
Why doing that? Is there a way so that you could comment right next to the codes which I highlighted in my previous post? Thank you again for your patience with me!
Anton Semechko
Anton Semechko 2018년 6월 6일
Lets say you are at a "point" (i,j) in array G. In a 4-connected neighbourhood, neighbouring points around (i,j) are
(i-1,j+0)
(i+0,j-1)
(i+0,j+1)
(i+1,j+0)
So, the 1st index of all neighbours is i_ngb=i+d_ij(:,1), and corresponding 2nd index is j_ngb=j+d_ij(:,2). Makes sense?
Finally, recall that G is a N-by-M array. So if i=1 (resp. i=N) then regardless of j, point (i,j) doesn't have any neighbours above (resp. below) it. The statement
i_ngb=max(min(i_ngb,N),1);
will enforce this requirement.
Likewise, if j=1 (resp. j=M) then regardless of i, point (i,j) doesn't have any neighbours to the left (resp. right) of it. The statement
j_ngb=max(min(j_ngb,M),1);
will enforce this requirement.

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Walter Roberson
Walter Roberson 2018년 6월 1일
gr = size(gauss,1);
gc = size(gauss,2);
rowpos = 1; colpos = 1;
improved = true;
while improved
bestval = gauss(rowpos, colpos);
improved = false;
for rowtry = max(1, rowpos-1) : min(rowpos+1, gr)
for coltry = max(1, colpos-1) : min(colpos+1, gc)
newval = gauss(rowtry, coltry);
if newval > bestval
bestval = newval;
rowpos = rowtry;
colpos = coltry;
improved = true;
break;
end
end
if improved; break; end
end
end
If it did not get caught in a local minima, then afterwards rowpos and colpos will be the location of the peak, and bestval will be the value there.

카테고리

Help CenterFile Exchange에서 Matrix Indexing에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by