Weighting Classes in a Binary Classification Neural Network
조회 수: 1 (최근 30일)
이전 댓글 표시
I am building a binary classification neural network. The last 3 layers of my CNN architecture are the following:
fullyConnectedLayer(2, 'Name', 'fc1');
softmaxLayer
classificationLayer
Currently, the classificationLayer uses a crossentropyex loss function, but this loss function weights the binary classes (0, 1) the same. Unfortunately, in my total data is have substantially less information about the 0 class than about the 1 class.
As a result, I want to weight the loss function to penalize misclassifying the 0 class more, with classWeights proportional to 1/(class frequency).
I noted that there is a way to weight classes in the pixelClassificationLayer but not the general classificationLayer, which I would be using as I am working on a classification problem.
How can I add class weights to my loss function for training?
댓글 수: 3
Eugene Alexander
2019년 5월 28일
Please take a look at Define Custom Weighted Classification Layer and the example on Speech Command Recognition using Deep Learning. I am trying it right now on a binary classification problem.
답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Pattern Recognition and Classification에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!