Help req. in using fitcsvm()

조회 수: 11 (최근 30일)
UserJ
UserJ 2018년 5월 9일
댓글: UserJ 2018년 5월 12일
Hi!
I am trying to use fitcsvm() to implement SVM. Previously, I was using LibSVM. I know from the results obtained using LibSVM that the best kernel for my problem is RBF. Now, I want to find the kernel parameters. For this, I am using the following code:
opts=struct('Optimizer','bayesopt','ShowPlots',true, 'Repartition',1);
svmmod=fitcsvm(ftTrn,CLTrn,'KernelFunction','rbf','OutlierFraction',0.05,...
'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',opts);
% ftTrn: Training data, %CLTrn: corresponding classlabels
1) Is this code right for my purpose?
2) svmmod contains the SVM trained on the entire training data or on a subset (on a fold used for determining the best values for the kernel parameters)?
3) Are there any other parameters I can tweak for improving the classification performance?

채택된 답변

Don Mathis
Don Mathis 2018년 5월 11일
편집: Don Mathis 2018년 5월 11일
(1) Yes that's right. In that case it will optimize BoxConstraint and KernelScale.
(2) svmmod contains the SVM trained on the entire training data, using the best hyperparameters found. 5-fold crossvalidated misclassification rate was used as the objective function during optimization.
(3) You can optimize more variables. You can find out what hyperparameters are eligible like this:
>> h = hyperparameters('fitcsvm',ftTrn,CLTrn)
>> h.Name
h =
5×1 optimizableVariable array with properties:
Name
Range
Type
Transform
Optimize
ans =
'BoxConstraint'
ans =
'KernelScale'
ans =
'KernelFunction'
ans =
'PolynomialOrder'
ans =
'Standardize'
And then you can optimize additional hyperparameters like this:
svmmod=fitcsvm(ftTrn,CLTrn,'KernelFunction','rbf','OutlierFraction',0.05,...
'OptimizeHyperparameters',{'BoxConstraint','KernelScale','Standardize'},'HyperparameterOptimizationOptions',opts)
Because you're fixing the kernel function, the 'PolynomialOrder' hyperparameter is not relevant. So 'Standardize' ends up being the only additional hyperparameter.
One more note: Since you're now optimizing 3 variables, you might want to run the optimization longer, say 60 evaluations:
opts=struct('Optimizer','bayesopt','ShowPlots',true, 'Repartition',1, 'MaxObjectiveEvaluations',60);
svmmod=fitcsvm(ftTrn,CLTrn,'KernelFunction','rbf','OutlierFraction',0.05,...
'OptimizeHyperparameters',{'BoxConstraint','KernelScale','Standardize'},'HyperparameterOptimizationOptions',opts)
  댓글 수: 2
Don Mathis
Don Mathis 2018년 5월 11일
Yet one more note: If you've got some time on your hands, why not let it try other kernel functions, too?
opts=struct('Optimizer','bayesopt','ShowPlots',true, 'Repartition',1, 'MaxObjectiveEvaluations',60);
svmmod=fitcsvm(ftTrn,CLTrn,'OutlierFraction',0.05,...
'OptimizeHyperparameters','all','HyperparameterOptimizationOptions',opts)
UserJ
UserJ 2018년 5월 12일
Thanks a lot Don

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Model Building and Assessment에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by