What threshold is plotconfusion applying?
조회 수: 8 (최근 30일)
이전 댓글 표시
There is some interesting behaviour with plotconfusion when passing it double values instead of categorical values. If I have some predicted responses and plot the confusion matrix like this:
plotconfusion(Y', yEst)
I get different results from when I do this to set the decision boundary at 0.5 (which is what the confusion() function documentation claims is the boundary used, although I'm not sure if that's what plotconfusion uses).
plotconfusion(Y', double(yEst > 0.5))
What is it actually doing behind the scenes?
Code and data provided
댓글 수: 0
채택된 답변
Greg Heath
2018년 5월 3일
편집: Greg Heath
2018년 5월 3일
% The example in the "help PLOTCONFUSION" dcumentation doesn't help because there are no errors with the simpleclass_dataset! Therefore, consider the cancer dataset in the "doc PLOTCONFUSION" example
close all, clear all, clc
[ x t ] = cancer_dataset;
[ I N ] = size(x) %[ 9 699 ]
[ O N ] = size(t) %[ 2 699 ]
vart = mean(var(t',1)) % 0.2259
t1 = t(1,:); t2 = t(2,:);
N1 = sum(t1), N2 = sum(t2) % 458, 241
m1 = mean(t1), m2 = mean(t2) % 0.6552, 0.3448
vart1 = var(t1,1), vart2 = var(t2,1)% 0.2259, 0.2259
net = patternnet(10);
rng(0)
[net tr y e ] = train(net,x,t);
% y = net(x); e = t - y;
NMSE = mse(e)/vart % 0.0984
% NOTE: Although regression error ~ 10%)
% classifcation error will only be ~ 3%
[c,cm,ind,per] = confusion(t,y)
% cm = 446 12 ( 12/458 = 0.0262 )
% 8 233 ( 8/241 = 0.0332 )
% c = 0.0286 ( 20/699 = 0.0286 )
% ( 8/454 = 0.0176 , 12/245 = 0.0490 )
% per = 0.0490 0.0176 0.9824 0.9510
% 0.0176 0.0490 0.9510 0.9824
plotconfusion(t,y)
NOTE: There are no thresholds to apply. The classification is determined by the class with the highest output which is interpreted as a posterior probability.
Hope this helps.
Thank you for formally accepting my answer
Greg
댓글 수: 2
Greg Heath
2018년 5월 3일
IT SHOULD BE NOTED THAT THE TARGET MATRIX COLUMNS SHOULD ALWAYS BE COLUMNS OF THE UNIT MATRIX !!!
The corresponding values are often interpreted as prior probabilities.
Greg
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!