Smoothing Numerical Differentiation Result

조회 수: 8 (최근 30일)
Ahmed Zankoor
Ahmed Zankoor 2018년 4월 23일
댓글: Ahmed Zankoor 2018년 4월 26일
I want to get the derivative of this S-shaped curve this way (x*(dy/dx)) which is expected to be like the normal distribution bell-shaped curve, I used x(2:end).*diff(y)./diff(x) , gradient function and central difference method. but the result was very noisy since it is a numerical differentiation. My question, is there a way to smooth the result to get a better derivative curve?

채택된 답변

Jim Riggs
Jim Riggs 2018년 4월 23일
편집: Jim Riggs 2018년 4월 23일
The attached file contains some higher-order methods for computing numerical derivatives. You can start with this. For very well behaved data, further smoothing might be achieved by curve fitting a function to the data and using the function derivative. If a more general method is desired, there are a number of ways to filter noisy data (for example, Matlab function "filter").
  댓글 수: 4
Ahmed Zankoor
Ahmed Zankoor 2018년 4월 25일
The problem that I can not understand is that the data I want to find the derivative for is not that noisy yet I get a bad derivative, you can see the attached figures. So I do not think it needs filtering.
Ahmed Zankoor
Ahmed Zankoor 2018년 4월 26일
I found the problem, the x variable is generated using normrnd (random variables following normal distribution) and the differences between the values vary greatly. for example dx=[.2 .01 ...] that is why when we compute the derivative its values show heavy noise.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Interpolation에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by