how can I replace the softmax layer with another classifier as svm in convolution network
조회 수: 6 (최근 30일)
이전 댓글 표시
I made deep learning application that using softmax
layers = [ imageInputLayer(varSize); conv1; reluLayer;
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(4,'Stride',2);
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64,'Padding',2,'BiasLearnRateFactor',2);
reluLayer();
maxPooling2dLayer(4,'Stride',2)
fc1;
reluLayer();
fc2;
reluLayer();
%returns a softmax layer for classification problems. The softmax layer uses the softmax activation function.
softmaxLayer()
classificationLayer()];
I want to use SVM and random forest classifiers instead of softmax. and use a deep learning for feature extraction. I hope I can get a link for a tutorial.
댓글 수: 1
답변 (4개)
Johannes Bergstrom
2018년 4월 17일
Here is an example: https://www.mathworks.com/help/nnet/examples/feature-extraction-using-alexnet.html
Nagwa megahed
2022년 4월 21일
the only possible solution is to save the extracted features by the deep model , then use this features as an input to the SVM or any other wanted classifier.
댓글 수: 1
Saifullah Razali
2019년 2월 19일
hello.. just wondering.. have u got the answer yet? i have the same exact problem
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Image Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!