fitting experimental data with the model + Monte-Carlo

조회 수: 1 (최근 30일)
Farhan Ashraf
Farhan Ashraf 2018년 4월 5일
Hello, I am trying to run this code and it's giving an error that matrix dimensions must not agree. I tried but did not resolve the issue. please suggest something
if
function [fitresult, gof] = createFit(t, y)
t=[24.88503903 78.50497273 139.9636403 194.6529783 297.4975938 397.283713];
y=[45.00727678 36.79417319 37.5451424 33.05702304 30.41701789 28.98254504];
nsample=1000;
for i=1:nsample
DD=1e12+2e12*randn(1);
self_coff=0.08+0.04*randn(1);
line_energy=0.5+0.5*randn(1);
%conversion_factor=0.32+0.06*randn(1);
threshold_stress=25.9e9*2.86e-10.*sqrt(DD).*((0.5.*line_energy)+sqrt(self_coff));
ave_strainrate=2.86e-10*1e12.*sqrt(DD);
[xData, yData] = prepareCurveData( t, y );
ft = fittype( strcat('(',num2str(threshold_stress)),'+((0.89.*s)*(1-((8.617e-5.*x)./F).*log(6.667e-4,'./strcat('(',num2str(ave_strainrate)),'))).^(1/q))^(1/p)))./(0.33))', 'independent', 'x', 'dependent', 'y');.
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
opts.Lower = [1.1 0.667 1.5 3];
opts.StartPoint = [1.8 0.667 1.5 4];
opts.TolX = 1;
opts.Upper = [3.2 0.667 1.5 25];
end
% Fit model to data.
[fitresult, gof] = fit( xData, yData, ft, opts );
end

답변 (0개)

카테고리

Help CenterFile Exchange에서 Linear and Nonlinear Regression에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by