이 질문을 팔로우합니다.
- 팔로우하는 게시물 피드에서 업데이트를 확인할 수 있습니다.
- 정보 수신 기본 설정에 따라 이메일을 받을 수 있습니다.
Why optimization has a Initial point value
조회 수: 4 (최근 30일)
이전 댓글 표시
Why optimization has a Initial point value
댓글 수: 4
Geoff Hayes
2018년 3월 12일
Pearwpun - I think most optimization algorithms have an initial point so that the algorithm can then improve upon that point.
Why do you think that it is unnecessary?
Geoff Hayes
2018년 3월 12일
Oh you mean why is the answer the same as your initial value? Is that your question?
Why did you choose 310 as an initial point?
답변 (1개)
Pearwpun Bunjun
2018년 3월 12일
X0 = 310*ones(1,m);
Lb =(30+273)*ones(1,m);
Ub =(50+273)*ones(1,m);
nonlcon = @constraints;
options = optimoptions(@fmincon,'Algorithm','sqp','MaxIter',300);
[MV,fval]= fmincon(@Obj,X0,[],[],[],[],[],[],@NONLCON,options);
answer is X0 = 310
댓글 수: 6
Torsten
2018년 3월 12일
What is @Obj ?
What is @NONLCON (note that "nonlcon" and "NONLCON" are different because MATLAB is case-sensitive) ?
Pearwpun Bunjun
2018년 3월 12일
편집: Pearwpun Bunjun
2018년 3월 12일
@Obj=fun @NONLCON=constraints correct @nonlcon is model incorrect did not use
Pearwpun Bunjun
2018년 3월 12일
편집: Pearwpun Bunjun
2018년 3월 12일
function PPP7 clear global C1 Tj1 Tjsp1 p m
b = 1.45; % dimensionless : nucleation rate exponential g = 1.5; % dimensionless : growth rate exponential kb = 285.0; % the nucleation rate constant (1/(s um3) kg = 1.44*10^8; % the growth rate constant (um/s) EbR = 7517.0; % Eb/R : the nucleation activation energy/gas constant (K) EgR = 4859.0; % Eg/R : the growth activation energy/gas constant(K) U = 1800; % the overall heat transfer coefficient (kJ/(m2 h K)) A = 0.25; % the total heat transfer surface area (m2) delH = 44.5; % the heat of reaction (kJ/kg) Cp = 3.8; % the heat capacity of the solution (kJ/(kg K)) M = 27.0; % the mass of solvent in the crystallizer (kg) rho = 2.66*10^-12; % the density of crystal (g/um3) kv = 1.5; % the volumetric shape factor
%jacket Parameter Vj=0.015; %m3 Fj=0.001; %m3/s rhoj=1000; %kg/m3 Cpj=4.184; %J/kgK
% Time TTime=30; tf = (60*TTime); % sec (30 min) dt = 20; % sec nt = tf/dt; t = linspace(0,TTime,nt+1);% min sampt= 2; % unit: min % q=1; p=30; m=30; z=0; % initial conditions
C(1) = 0.1743; % g solute/g solvent T(1) = 323; % K Tj(1) =278.3; % K Tjsp(1) = (20+273); % K initial values of manipulated variable %Tsp(1) =(127+273);
%C1(1)=C(1); %T1(1)=T(1); %Tj1(1)=Tj(1); %Tsp1(1)=Tsp(1);
%for Y=1:90
%Tsp(20)=490; % Tsp(Y+1)=Tsp(Y);
%Tsp(52)=450; % Tsp(Y+1)=Tsp(Y); %Tsp(70)=430; % Tsp(Y+1)=Tsp(Y); %end
% Parabolic distribution @ 70-90 um un0(1) = 0; un1(1) = 0; un2(1) = 0; un3(1) = 0; un4(1) = 0; un5(1) = 0;
us0(1) = 70;
us1(1) = 1.8326e+004; us2(1) = 5.0480e+006; us3(1) = 1.3928e+009; us4(1) = 3.8490e+011; us5(1) = 1.0654e+014;
h=waitbar(0,'Simulation in Process...');
for i=1:nt; waitbar(i/nt); % Moment models % the total crystal number uu0(i) = un0(i)+us0(i); % the total crystal length uu1(i) = un1(i)+us1(i); % the total crystal surface area uu2(i) = un2(i)+us2(i); % the total crystal volume uu3(i) = un3(i)+us3(i);
% Saturation concentration (T in celcious)
Temp(i) = T(i)-273;
Cs(i) = 6.29*10^-2+(2.46*10^-3*Temp(i))-(7.14*10^-6*Temp(i)^2);
% Metastable concentration
Cm(i) = 7.76*10^-2+(2.46*10^-3*Temp(i))-(8.10*10^-6*Temp(i)^2);
% Supersaturation
S(i) = (C(i)-Cs(i))/Cs(i);
% The nucleation rate
B(i) = kb*(exp(-EbR/T(i)))*(((C(i)-Cs(i))/Cs(i))^b)*uu3(i);
% The growth rate
G(i) = kg*(exp(-EgR/T(i)))*(((C(i)-Cs(i))/Cs(i))^g);
% Population Balance Equation(PBE)
nr=600;
for j=1:nr+1 % r=0:600
r = j+1;
% Seed
% Initial condition
if r>=250 & r<=300
rs(j,1) = r;
% Parabolic distribution
ns(j,1) = 0.0032*(300-r)*(r-250);
else
rs(j,1) = r;
ns(j,1) = 0;
end % if j>=250 &j<=300
rs(j,i+1) = rs(j,i)+G(i)*dt;
ns(j,i+1) = ns(j,i);
if rs(j,i+1)>600
rs(j,i+1)=600;
end
% Nucleation
% at t=0
if i==1
rn(1,1) = 0;
nn(1,1) = B(1)/G(1);
else % at t=dt
if j==1 % r=0
rn(1,i) = 0;
nn(1,i) = B(i)/G(i);
else
rn(j,i) = rn(j-1,i-1)+G(i)*dt;
nn(j,i) = nn(j-1,i-1);
end % if j==1
end % if i==1
end % for j=1:nr+1
% The crystal size distribution
%%%%%%%%The crystal size distribution
if i==1
Nn = [B(1)/G(1); zeros(nr,1)];
else
Nn = nn([1:nr+1],i);
end
Ns = ns([1:nr+1],i);
n = Nn+Ns;
if i==1
rn([1:nr+1],i) = 0;
else
rn(nr+1,i) = rn(nr,i);
end
rrn = rn([1:nr+1],i);
rrs = rs([1:nr+1],i);
% Moment : Trapezoidal Rule
for k=1:nr+1
% u2
if k==1
sumun22 = rrn(1,1)^2*Nn(1,1);
sumus22 = rrs(1,1)^2*Ns(1,1);
else
sumun22 = sumun22+(((rrn(k-1,1)^2*Nn(k-1,1))+(rrn(k,1)^2*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus22 = sumus22+(((rrs(k-1,1)^2*Ns(k-1,1))+(rrs(k,1)^2*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu2=sumun22+sumus22;
% u3
if k==1
sumun33 = rrn(1,1)^3*Nn(1,1);
sumus33 = rrs(1,1)^3*Ns(1,1);
else
sumun33 = sumun33+(((rrn(k-1,1)^3*Nn(k-1,1))+(rrn(k,1)^3*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus33 = sumus33+(((rrs(k-1,1)^3*Ns(k-1,1))+(rrs(k,1)^3*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu3=sumun33+sumus33;
% u1
if k==1
sumun11 = rrn(1,1)^1*Nn(1,1);
sumus11 = rrs(1,1)^1*Ns(1,1);
else
sumun11 = sumun11+(((rrn(k-1,1)^1*Nn(k-1,1))+(rrn(k,1)^1*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus11 = sumus11+(((rrs(k-1,1)^1*Ns(k-1,1))+(rrs(k,1)^1*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu1=sumun11+sumus11;
% u0
if k==1
sumun00 = rrn(1,1)^0*Nn(1,1);
sumus00 = rrs(1,1)^0*Ns(1,1);
else
sumun00 = sumun00+((rrn(k-1,1)^0*Nn(k-1,1)+rrn(k,1)^0*Nn(k,1))*(rrn(k,1)-rrn(k-1,1))/2);
sumus00 = sumus00+((rrs(k-1,1)^0*Ns(k-1,1)+rrs(k,1)^0*Ns(k,1))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu0=sumun00+sumus00;
% u4
if k==1
sumun44 = rrn(1,1)^4*Nn(1,1);
sumus44 = rrs(1,1)^4*Ns(1,1);
else
sumun44 = sumun44+(((rrn(k-1,1)^4*Nn(k-1,1))+(rrn(k,1)^4*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus44 = sumus44+(((rrs(k-1,1)^4*Ns(k-1,1))+(rrs(k,1)^4*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu4=sumun44+sumus44;
% u5
if k==1
sumun55 = rrn(1,1)^5*Nn(1,1);
sumus55 = rrs(1,1)^5*Ns(1,1);
else
sumun55 = sumun55+(((rrn(k-1,1)^5*Nn(k-1,1))+(rrn(k,1)^5*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus55 = sumus55+(((rrs(k-1,1)^5*Ns(k-1,1))+(rrs(k,1)^5*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu5=sumun55+sumus55;
end % for k
u2(i) = sumu2;
u3(i) = sumu3;
u1(i) = sumu1;
u0(i) = sumu0;
u4(i) = sumu4;
u5(i) = sumu5;
C1=C(i); Tjsp1=Tjsp(i); Tj1=Tj(i);
% Mass Balance : Solute concentration
C(i+1) = C(i)+dt*(-3*rho*kv*G(i)*u2(i));
% Batch Energy Balance
TT3=T(i);
RR1=(-U*A/(M*Cp*3600)*(T(i)-Tj(i))-delH/Cp*3*rho*kv*G(i)*u2(i));
T(i+1)=T(i)+dt*RR1;
TT4=T(i+1);
Temp(i+1)= T(i+1)-273;
Cs(i+1) = 6.29*10^-2+(2.46*10^-3*Temp(i+1))-(7.14*10^-6*Temp(i+1)^2);
Cm(i+1) = 7.76*10^-2+(2.46*10^-3*Temp(i+1))-(8.10*10^-6*Temp(i+1)^2);
Tj(i+1)= Tj(i)+dt*(Fj/Vj*(Tjsp(i)-Tj(i))+(((U*A/3600)*(T(i)-Tj(i))/rhoj*Vj*Cpj)));
Tjsp(i+1)=Tjsp(i);
% Part III: Calculating the value of manipulated variable %
X0 = T(1)*ones(1,m);
Lb =(30+273)*ones(1,m);
Ub =(50+273)*ones(1,m);
nonlcon = @constraints;
options = optimoptions(@fmincon,'Algorithm','sqp','MaxIter',300);
% options = optimset('Display','iter');
[MV,fval]= fmincon(@Obj,X0,[],[],[],[],[],[],@NONLCON,options);
%x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
%@(MV)NONLCON(MV)
SS4=MV;
SS1=MV(1);
T(i+1) = MV(1);
%Moment model
%u3
%Neacleated class
un3(i+1) = sumun33+dt*(3*G(i)*sumun22);
%Seed class
%Virtual process
us3(i+1) = sumus33+dt*(3*G(i)*sumus22);
%the total crystal volume
uu3(i+1)=un3(i+1)+us3(i+1);
%u2
%Neacleated class
un2(i+1) = sumun22+dt*(2*G(i)*sumun11);
%Seed class
%Virtual process
us2(i+1) = sumus22+dt*(2*G(i)*sumus11);
%the total crystal surface area
uu2(i+1)=un2(i+1)+us2(i+1);
%u1
%Neacleated class
un1(i+1) = sumun11+dt*(1*G(i)*sumun00);
%Seed class
%Virtual process
us1(i+1) = sumus11+dt*(1*G(i)*sumus00);
%the total crystal volume
uu1(i+1)=un1(i+1)+us1(i+1);
%u0
%Neacleated class
un0(i+1) = sumun00+dt*(0*G(i)*sumun00);
%Seed class
%Virtual process
us0(i+1) = sumus00+dt*(0*G(i)*sumus00);
%the total crystal volume
uu0(i+1)=un0(i+1)+us0(i+1);
end delete(h) % DELETE the waitbar; don't try to CLOSE it.
save ppp7.mat RR1 TT3 TT4 figure subplot(2,1,1) stairs(t,T,'-b') legend('Reactor Temp') ylabel('T(k)') xlabel('Time (min)')
subplot(2,1,2) plot(t,C,'-b') legend('Concentration') xlabel('Time (min)') ylabel('C')
figure subplot(2,1,1) plot(t,Tj,'r',t,Tjsp,'b') legend('Tj') xlabel('Time (min)') ylabel('Tj')
figure subplot(1,1,1)
stairs(t,Tjsp,'r') legend('Tjsp') xlabel('Time (min)') ylabel('Tjsp')
function f = Obj(MV,m,p,C,Tj,Tjsp)
global C1 Tj1 Tjsp1 p m Lw II1 II2 II3 II4 II5
% Process parameters : Potassium sulfate (K2SO4-H2O) b = 1.45; % dimensionless : nucleation rate exponential g = 1.5; % dimensionless : growth rate exponential kb = 285.0; % the nucleation rate constant (1/(s um3) kg = 1.44*10^8; % the growth rate constant (um/s) EbR = 7517.0; % Eb/R : the nucleation activation energy/gas constant (K) EgR = 4859.0; % Eg/R : the growth activation energy/gas constant(K) U = 1800; % the overall heat transfer coefficient (kJ/(m2 h K)) A = 0.25; % the total heat transfer surface area (m2) delH = 44.5; % the heat of reaction (kJ/kg) Cp = 3.8; % the heat capacity of the solution (kJ/(kg K)) M = 27.0; % the mass of solvent in the crystallizer (kg) rho = 2.66*10^-12; % the density of crystal (g/um3) kv = 1.5; % the volumetric shape factor %jacket Parameter Vj=0.015; %m3 Fj=0.001; %m3/s rhoj=1000; %kg/m3 Cpj=4.184; %J/kgK
% Step size, Sampling time and process time % tf = 1800; % sec (30 min) dt = 20; % sec nt = tf/dt; t = linspace(0,30,nt+1);% min sampt= 2; % unit: min %
Cobj = C1 ; % g solute/g solvent Tobj = MV ; % K Tjobj = Tj1 ; % K Tjspobj = Tjsp1;
q=1; z=0;
% Parabolic distribution @ 70-90 um un0(1) = 0; un1(1) = 0; un2(1) = 0; un3(1) = 0; un4(1) = 0; un5(1) = 0;
us0(1) = 70;
us1(1) = 1.8326e+004; us2(1) = 5.0480e+006; us3(1) = 1.3928e+009; us4(1) = 3.8490e+011; us5(1) = 1.0654e+014;
for C=1:1:p
if C>m
Tobj(C)= Tobj(C-1)
end
end
for z=1:p
% Moment models
% the total crystal number
uu0(z) = un0(z)+us0(z);
% the total crystal length
uu1(z) = un1(z)+us1(z);
% the total crystal surface area
uu2(z) = un2(z)+us2(z);
% the total crystal volume
uu3(z) = un3(z)+us3(z);
% Saturation concentration (T in celcious)
Temp(z) = Tobj(z)-273;
Cs(z) = 6.29*10^-2+(2.46*10^-3*Temp(z))-(7.14*10^-6*Temp(z)^2);
% Metastable concentration
Cm(z) = 7.76*10^-2+(2.46*10^-3*Temp(z))-(8.10*10^-6*Temp(z)^2);
% Supersaturation
S(z) = (Cobj(z)-Cs(z))/Cs(z);
% The nucleation rate
B(z) = kb*(exp(-EbR/Tobj(z)))*(((Cobj(z)-Cs(z))/Cs(z))^b)*uu3(z);
% The growth rate
G(z) = kg*(exp(-EgR/Tobj(z)))*(((Cobj(z)-Cs(z))/Cs(z))^g);
% Population Balance Equation(PBE)
nr=600;
for j=1:nr+1 % r=0:600
r = j+1;
% Seed
% Initial condition
if r>=250 & r<=300
rs(j,1) = r;
% Parabolic distribution
ns(j,1) = 0.0032*(300-r)*(r-250);
else
rs(j,1) = r;
ns(j,1) = 0;
end % if j>=250 &j<=300
rs(j,z+1) = rs(j,z)+G(z)*dt;
ns(j,z+1) = ns(j,z);
if rs(j,z+1)>600
rs(j,z+1)=600;
end
% Nucleation
% at t=0
if z==1
rn(1,1) = 0;
nn(1,1) = B(1)/G(1);
else % at t=dt
if j==1 % r=0
rn(1,z) = 0;
nn(1,z) = B(z)/G(z);
else
rn(j,z) = rn(j-1,z-1)+G(z)*dt;
nn(j,z) = nn(j-1,z-1);
end % if j==1
end % if i==1
end % for j=1:nr+1
% The crystal size distribution
%%%%%%%%The crystal size distribution
if z==1
Nn = [B(1)/G(1); zeros(nr,1)];
else
Nn = nn([1:nr+1],z);
end
Ns = ns([1:nr+1],z);
n = Nn+Ns;
if z==1
rn([1:nr+1],z) = 0;
else
rn(nr+1,z) = rn(nr,z);
end
rrn = rn([1:nr+1],z);
rrs = rs([1:nr+1],z);
% Moment : Trapezoidal Rule
for k=1:nr+1
% u2
if k==1
sumun22 = rrn(1,1)^2*Nn(1,1);
sumus22 = rrs(1,1)^2*Ns(1,1);
else
sumun22 = sumun22+(((rrn(k-1,1)^2*Nn(k-1,1))+(rrn(k,1)^2*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus22 = sumus22+(((rrs(k-1,1)^2*Ns(k-1,1))+(rrs(k,1)^2*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu2=sumun22+sumus22;
% u3
if k==1
sumun33 = rrn(1,1)^3*Nn(1,1);
sumus33 = rrs(1,1)^3*Ns(1,1);
else
sumun33 = sumun33+(((rrn(k-1,1)^3*Nn(k-1,1))+(rrn(k,1)^3*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus33 = sumus33+(((rrs(k-1,1)^3*Ns(k-1,1))+(rrs(k,1)^3*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu3=sumun33+sumus33;
% u1
if k==1
sumun11 = rrn(1,1)^1*Nn(1,1);
sumus11 = rrs(1,1)^1*Ns(1,1);
else
sumun11 = sumun11+(((rrn(k-1,1)^1*Nn(k-1,1))+(rrn(k,1)^1*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus11 = sumus11+(((rrs(k-1,1)^1*Ns(k-1,1))+(rrs(k,1)^1*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu1=sumun11+sumus11;
% u0
if k==1
sumun00 = rrn(1,1)^0*Nn(1,1);
sumus00 = rrs(1,1)^0*Ns(1,1);
else
sumun00 = sumun00+((rrn(k-1,1)^0*Nn(k-1,1)+rrn(k,1)^0*Nn(k,1))*(rrn(k,1)-rrn(k-1,1))/2);
sumus00 = sumus00+((rrs(k-1,1)^0*Ns(k-1,1)+rrs(k,1)^0*Ns(k,1))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu0=sumun00+sumus00;
% u4
if k==1
sumun44 = rrn(1,1)^3*Nn(1,1);
sumus44 = rrs(1,1)^3*Ns(1,1);
else
sumun44 = sumun44+(((rrn(k-1,1)^3*Nn(k-1,1))+(rrn(k,1)^3*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus44 = sumus44+(((rrs(k-1,1)^3*Ns(k-1,1))+(rrs(k,1)^3*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu4=sumun44+sumus44;
% u5
if k==1
sumun55 = rrn(1,1)^3*Nn(1,1);
sumus55 = rrs(1,1)^3*Ns(1,1);
else
sumun55 = sumun55+(((rrn(k-1,1)^3*Nn(k-1,1))+(rrn(k,1)^3*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus55 = sumus55+(((rrs(k-1,1)^3*Ns(k-1,1))+(rrs(k,1)^3*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu5=sumun55+sumus55;
end
u2(z) = sumu2;
u3(z) = sumu3;
u1(z) = sumu1;
u0(z) = sumu0;
u4(z) = sumu4;
u5(z) = sumu5;
% Mass Balance : Solute concentration
TT1=Tobj(z);
RR5 =real(-3*rho*kv*G(z)*u2(z));
Cobj(z+1) = Cobj(z)+dt*RR5;
% Batch Energy Balance
WW=real(-U*A/(M*Cp*3600)*(Tobj(z)-Tjobj(z))-delH/Cp*3*rho*kv*G(z)*u2(z));
Tobj(z+1)= Tobj(z)+dt*WW;
TT2=Tobj(z+1);
Temp(z+1)= Tobj(z+1)-273;
Cs(z+1) = (6*10^-5)*exp(0.0396*Temp(z+1));
Tjobj(z+1)= Tjobj(z)+dt*(Fj/Vj*(Tjspobj(z)-Tjobj(z))+(((U*A/3600)*(Tobj(z)-Tjobj(z))/rhoj*Vj*Cpj)));
Tjspobj(z+1)=Tjspobj(z);
%Moment model
%u3
%Neacleated class
un3(z+1) = sumun33+dt*(3*G(z)*sumun22);
%Seed class
%Virtual process
us3(z+1) = sumus33+dt*(3*G(z)*sumus22);
%the total crystal volume
uu3(z+1)=un3(z+1)+us3(z+1);
%u2
%Neacleated class
un2(z+1) = sumun22+dt*(2*G(z)*sumun11);
%Seed class
%Virtual process
us2(z+1) = sumus22+dt*(2*G(z)*sumus11);
%the total crystal surface area
uu2(z+1)=un2(z+1)+us2(z+1);
%u1
%Neacleated class
un1(z+1) = sumun11+dt*(1*G(z)*sumun00);
%Seed class
%Virtual process
us1(z+1) = sumus11+dt*(1*G(z)*sumus00);
%the total crystal volume
uu1(z+1)=un1(z+1)+us1(z+1);
%u0
%Neacleated class
un0(z+1) = sumun00+dt*(0*G(z)*sumun00);
%Seed class
%Virtual process
us0(z+1) = sumus00+dt*(0*G(z)*sumus00);
%the total crystal volume
uu0(z+1)=un0(z+1)+us0(z+1);
%u4
%Neacleated class
un4(z+1) = sumun44+dt*(4*G(z)*sumun44);
%Seed class
%Virtual process
us4(z+1) = sumus44+dt*(4*G(z)*sumus44);
%the total crystal volume
uu4(z+1)=un4(z+1)+us4(z+1);
%u5
%Neacleated class
un5(z+1) = sumun55+dt*(5*G(z)*sumun55);
%Seed class
%Virtual process
us5(z+1) = sumus55+dt*(5*G(z)*sumus55);
%the total crystal volume
uu5(z+1)=un5(z+1)+us5(z+1);
end %fori=1:nt SS6=real(un3(p)); SS5=real(us3(p));
Lw=real(uu3/uu2); II1=[Tobj>=303]; II5= [Tobj<=323]; II2=[Cs<=Cobj]; II3= [us3(p)>=8.3301*10^9]; II4 = [Tobj(z+1)<=abs((2*dt)+Tobj(z))]
f= SS6/SS5;
function [c1,c2,c3,c4,c5,ceq] = NONLCON(MV)
global Lw II1 II2 II3 II4 II5 Lw1 =Lw; c1 = double(II1) c2 = double(II2); c3 = double(II3); c3 = double(II4); c5 = double(II5) ceq = [];
참고 항목
카테고리
Help Center 및 File Exchange에서 Crystals에 대해 자세히 알아보기
태그
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!오류 발생
페이지가 변경되었기 때문에 동작을 완료할 수 없습니다. 업데이트된 상태를 보려면 페이지를 다시 불러오십시오.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
