dr/dt* ln(a*r*dr/dt)=b/r^7 how to solve this equation

조회 수: 1 (최근 30일)
vishal  vyas
vishal vyas 2018년 2월 20일
댓글: Torsten 2018년 2월 21일
kindly help me to solve this equation a = 0.5, b=2, r(0)=1.2
  댓글 수: 2
John D'Errico
John D'Errico 2018년 2월 20일
I'll suggest you probably won't get much of an answer here, because this is not a question about MATLAB. You are asking how to solve that nonlinear differential equation. So it is a question purely about mathematics, on a problem with no clear solution and I will guess no direct analytical solution. You might catch someone here with an idea, but far more likely to get a result is by asking on a site where the question is on-topic.
Walter Roberson
Walter Roberson 2018년 2월 20일
There is no easy solution for that. The rule is:
r(t) = RootOf(int(P^7*LambertW(1/P^6), P = Z .. 6/5)+2*t)
which is to say that at each point, t, r(t) is the lower bound of the integral P^7*LambertW(1/P^6) such that integrating over P from lower bound to 6/5, plus 2*t, gives 0. (P is an arbitrary variable name here.)

댓글을 달려면 로그인하십시오.

답변 (1개)

Roger Stafford
Roger Stafford 2018년 2월 20일
Here is how I would approach your problem. First we write
a*r*dr/dt*log(a*r*dr/dt) = a*b/r^6
Now define w:
w = log(a*r*dr/dt)
and therefore
a*r*dr/dt = exp(w)
Thus
exp(w)*w = a*b/r^6
Hence
w = lambertw(a*b/r^6)
a*r*dr/dt = exp(lambertw(a*b/r^6))
dr/dt = 1/(a*r)*exp(lambertw(a*b/r^6))
Now finally you have a differential equation in the form that Matlab's ode functions can evaluate numerically, provided you have the lambertw function available.
  댓글 수: 1
Torsten
Torsten 2018년 2월 21일
Alternatively, by setting
y1 = r
y2 = dr/dt,
you can use ODE15S to solve the differential-algebraic system
y1' = y2
y2*log(a*y1*y2)-b/y1^7 = 0
Best wishes
Torsten.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Programming에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by