How to check the kernel parameter values of a Gaussian process regression (GPR) model after training
조회 수: 1 (최근 30일)
이전 댓글 표시
I am trying to train a GPR model with the length scale of the kernel function in certain range. Therefore, I did the following ( follow this example ):
params = hyperparameters('fitrgp',X,y);
params(4).Range = [1,10];
gprMdl = fitrgp(X, y, 'OptimizeHyperparameters', params);
However, after training, I found that the kernel parameters in the trained model is empty. This confuses me a lot and I tried different ranges of kernel parameters and found that this restriction on its range actually worked. So I was wondering how I could obtain the exact value of kernel parameters from the trained GPR model. Thanks in advance!
댓글 수: 0
채택된 답변
Don Mathis
2018년 2월 1일
You can see the kernel parameters like this:
gprMdl.KernelInformation.KernelParameters
By default, params(4) (KernelScale) is not optimized. To optimize it, you'll need to set the Optimize field:
params = hyperparameters('fitrgp',X,y);
params(4).Range = [1,10];
params(4).Optimize = true;
gprMdl = fitrgp(X, y, 'OptimizeHyperparameters', params);
gprMdl.KernelInformation.KernelParameters
댓글 수: 5
Don Mathis
2018년 2월 2일
That's described in the section on the KernelParameters argument: https://www.mathworks.com/help/stats/fitrgp.html?searchHighlight=fitrgp&s_tid=doc_srchtitle#input_argument_namevalue_d119e335756
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Gaussian Process Regression에 대해 자세히 알아보기
제품
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!