Python plt.plot getting unwanted lines

조회 수: 14 (최근 30일)
adrixas
adrixas 2018년 1월 12일
답변: SATTI SRIDHAR 2025년 12월 17일
Hi guys, I am trying to plot average usage by month. But somehow on the plot there are unwanted colorful line. The top brown line is correct, but other lines are unwanted. Maybe you know how to get rid of them, and why did they appear? I attached the image of the plot
  댓글 수: 1
SATTI SRIDHAR
SATTI SRIDHAR 2025년 12월 17일
import matplotlib.pyplot as plt
# ... your plotting code goes here ...
# e.g., plt.plot(wavelengths, spectra[0], ...)
# plt.plot(wavelengths, spectra[1], ...)
# ... and so on for all the stars
# Add the legend using the starnames array
plt.legend(starnames)
# ... potentially adjust legend location (optional) ...
# plt.legend(starnames, loc='upper left')
# Display the plot
plt.show()

댓글을 달려면 로그인하십시오.

채택된 답변

adrixas
adrixas 2018년 1월 14일
I just needed to write all plot function after the for loop not in it. Thanks

추가 답변 (2개)

Steven Lord
Steven Lord 2018년 1월 12일
Can you show a small segment of your MATLAB code that calls Python and include a small data set with which you can see the unwanted colorful lines?
If you have your data and you want to bin it by month, consider using histogram with the 'DisplayStyle' option set to 'stairs'. I believe that will do what you want or something close to it.
  댓글 수: 1
adrixas
adrixas 2018년 1월 12일
편집: adrixas 2018년 1월 12일
I attach the dataset file. Here is my entire code:
import matplotlib.pyplot as plt #
import pandas as pd #
import numpy as np #
import scipy.stats as stats #
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
sFile = 'E:/AirQualityUCI.csv' #
Data = pd.read_table(sFile,';') #
benzeneref = Data['C6H6(GT)'] #
date= Data['Date'] #
benzenetit = Data['PT08.S2(NMHC)'] #
mask = ~np.isnan(benzeneref) #
benzeneref = benzeneref[mask]
benzeneref = np.ma.masked_array(benzeneref, benzeneref == -200)
benzenetit = benzenetit[mask]
benzenetit = np.ma.masked_array(benzenetit, benzenetit == -200)
date = date[mask]
month = []
months = [[]for _ in range(12)]
day = []
days = [[]for _ in range(31)]
for d in date:
s = np.int64(d.split('/')) #
month.append(s[1]) #
day.append(s[0]) #
uniqueMonth = np.unique(month)#
uniqueDay = np.unique(day)#
for dd in uniqueDay: #
mask1 = day == dd #
days[dd-1] = benzeneref[mask1] #
averageref = np.arange(12, dtype=float) #
averagetit = np.arange(12, dtype=float)#
for mn in uniqueMonth: #
mask = month == mn #
print ('month=%d records=%d' %(mn, np.sum(mask))) #
print ('month=%d mean=%f' %(mn, np.mean(benzeneref[mask])))#
averageref[mn-1] = np.mean(benzeneref[mask])#
averagetit[mn-1] = np.mean(benzenetit[mask])#
months[mn-1] = benzeneref[mask]#
plt.figure(1) #
plt.figure(2) #
plt.figure(3)
plt.plot(uniqueMonth, averagetit)
# prog = np.polyfit(uniqueMonth,average1, 1)
# prog1 = np.polyval(prog,uniqueMonth)
# plt.plot(uniqueMonth,prog1)
anova1 = stats.f_oneway(months[0],months[1],months[2],months[3],months[4],months[5],months[6],months[7],months[8],months[9],months[10],months[11])

댓글을 달려면 로그인하십시오.


SATTI SRIDHAR
SATTI SRIDHAR 2025년 12월 17일
import matplotlib.pyplot as plt
# ... your plotting code goes here ...
# e.g., plt.plot(wavelengths, spectra[0], ...)
# plt.plot(wavelengths, spectra[1], ...)
# ... and so on for all the stars
# Add the legend using the starnames array
plt.legend(starnames)
# ... potentially adjust legend location (optional) ...
# plt.legend(starnames, loc='upper left')
# Display the plot
plt.show()

카테고리

Help CenterFile Exchange에서 Data Import and Analysis에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by