net = narnet(feedbackDelays,hiddenLayerSize,'open',trainFcn);
                            [x_tr,xi_tr,ai_tr,t_tr] = preparets(net,{},{},trainSeries);
                            net.divideFcn = 'divideblock';  
                            net.divideParam.trainRatio = 100/100;
                            net.performFcn = 'mse';
                            net.plotFcns = {'plotperform','plottrainstate', 'ploterrhist', ...
                            'plotregression', 'plotresponse', 'ploterrcorr', 'plotinerrcorr'};
                            assignin('base','hiddenLayerSize',hiddenLayerSize);
                            
                            [net,tr] = train(net,x_tr,t_tr,xi_tr,ai_tr);
                            y_tr = net(x_tr,xi_tr,ai_tr);
                            
                            [x_ts,xi_ts,ai_ts,t_ts] = preparets(net,{},{},testSeries);
                           y_ts = net(x_ts,xi_ts,ai_ts);
                           assignin('base','t_ts',t_ts);
                           assignin('base','y_ts',y_ts);
                          e_ts = gsubtract(t_ts,y_ts);
                           
                           mat_e_ts = cell2mat(e_ts);
                           mat_t_ts = cell2mat(t_ts);
                          thePredictMape = mean(abs(mat_e_ts./mat_t_ts))*100;
                          assignin('base','thePredictMape',thePredictMape);