What happen to the CUDA cache mem?

조회 수: 3 (최근 30일)
fpexp
fpexp 2017년 12월 14일
댓글: Joss Knight 2018년 7월 18일
Hello there. I am a newbie with the GPU computing with Matlab, so apologize if the question sounds silly. I am trying to optimise some computation I am doing with the GPU. I believe it is well configured. I am doing some testing to understand how the GPU reacts to different commands and choose the best programming strategy. I have incurred in the following thing. I would appreciate some elucidation about the mechanism by which this feature happens. I am running a Geforce GTX 1080 ti. I do the following:
A = rand([100 100 100 100 10],'single','gpuArray')
tic,permute(A,[3 2 1 5 4]),wait(M.SelectedDevice()),toc
(trying to see how long does it take to permute a matrix)
now, if I ask the parallel.gpu.GPUDeviceManager.instance.SelectedDevice().AvailableMemory (read the available memory), then I can run a permute again. However, if I run two consecutive permute, I get the following
Error using gpuArray/permute Out of memory on device. To view more detail about available memory on the GPU, use 'gpuDevice()'. If the problem persists, reset the GPU by calling 'gpuDevice(1)'.
WHY?
  댓글 수: 2
Walter Roberson
Walter Roberson 2017년 12월 14일
Have you tried calling gather() after the permute?
fpexp
fpexp 2017년 12월 14일
nope, in fact the result is not stored anywhere. I would have expected the RAM area to be released immediately

댓글을 달려면 로그인하십시오.

답변 (2개)

Joss Knight
Joss Knight 2017년 12월 19일
The result is stored as the variable ans, which means you have less memory the second time round.
  댓글 수: 4
giovanni esposito
giovanni esposito 2018년 7월 18일
편집: giovanni esposito 2018년 7월 18일
hence, for example this code shall free all gpus memory ad the end of each loop, correct ? I try to do this but memory is still busy at the end of each loop.
clear all
RefreshGPU = 100;
NW = gpuDeviceCount;
nw = 1:NW;
poolobj = gcp('nocreate'); % If no pool, do not create new one.
if isempty(poolobj)
ParObj = parpool('local',NW);
else
delete(gcp);
ParObj = parpool('local',NW);
end
a=rand(NW,1e5);
Nloop = 1e5;
for kk=1:Nloop
spmd
b = somefunction(a(labindex,:)); % this function do something on GPUs
end
clear b
end
Joss Knight
Joss Knight 2018년 7월 18일
No, you are calling clear b on the client. You need to do it inside the SPMD block.

댓글을 달려면 로그인하십시오.


Jeffrey Daniels
Jeffrey Daniels 2018년 3월 12일
FYI - For anyone else having similar problems, I get similar errors when I run too many workers. The GPU is being shared by each of the CPU workers and if you have too large or too many GPU matricies you will run out of memory on the GPU. One solution is to open the Cluster Profile Manager from the Parallel menu and reduce the number of workers in your Cluster Profile.

카테고리

Help CenterFile Exchange에서 Parallel Computing에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by