sine wave plot
조회 수: 7,732(최근 30일)
표시 이전 댓글
Hi,
I am having some trouble plotting a sine wave and i'm not sure where i am going wrong.
i have
t = [0:0.1:2*pi]
a = sin(t);
plot(t,a)
this works by itself, but i want to be able to change the frequency. When i run the same code but make the change
a = sin(2*pi*60*t)
the code returns something bad. What am i doing wrong? How can i generate a sin wave with different frequencies?
댓글 수: 14
Gokul Krishna N
2021년 10월 13일
Just been reading the comments in this question. Hats off to you, sir @Walter Roberson
채택된 답변
Rick Rosson
2012년 4월 24일
Please try:
%%Time specifications:
Fs = 8000; % samples per second
dt = 1/Fs; % seconds per sample
StopTime = 0.25; % seconds
t = (0:dt:StopTime-dt)'; % seconds
%%Sine wave:
Fc = 60; % hertz
x = cos(2*pi*Fc*t);
% Plot the signal versus time:
figure;
plot(t,x);
xlabel('time (in seconds)');
title('Signal versus Time');
zoom xon;
HTH.
Rick
댓글 수: 10
추가 답변(8개)
Junyoung Ahn
2020년 6월 16일
clear;
clc;
close;
f=60; %frequency [Hz]
t=(0:1/(f*100):1);
a=1; %amplitude [V]
phi=0; %phase
y=a*sin(2*pi*f*t+phi);
plot(t,y)
xlabel('time(s)')
ylabel('amplitude(V)')
댓글 수: 2
Robert
2017년 11월 28일
aaa,
What goes wrong: by multiplying time vector t by 2*pi*60 your discrete step size becomes 0.1*2*pi*60=37.6991. But you need at least two samples per cycle (2*pi) to depict your sine wave. Otherwise you'll get an alias frequency, and in you special case the alias frequency is infinity as you produce a whole multiple of 2*pi as step size, thus your plot never gets its arse off (roundabout) zero.
Using Rick's code you'll be granted enough samples per period.
Best regs
Robert
댓글 수: 0
shampa das
2020년 12월 26일
편집: Walter Roberson
2021년 1월 31일
clc; t=0:0.01:1; f=1; x=sin(2*pi*f*t); figure(1); plot(t,x);
fs1=2*f; n=-1:0.1:1; y1=sin(2*pi*n*f/fs1); figure(2); stem(n,y1);
fs2=1.2*f; n=-1:0.1:1; y2=sin(2*pi*n*f/fs2); figure(3); stem(n,y2);
fs3=3*f; n=-1:0.1:1; y3=sin(2*pi*n*f/fs3); figure(4); stem(n,y3); figure (5);
subplot(2,2,1); plot(t,x); subplot(2,2,2); plot(n,y1); subplot(2,2,3); plot(n,y2); subplot(2,2,4); plot(n,y3);
댓글 수: 0
soumyendu banerjee
2019년 11월 1일
%% if Fs= the frequency u want,
x = -pi:0.01:pi;
y=sin(Fs.*x);
plot(y)
댓글 수: 0
wilfred nwakpu
2020년 2월 1일
%%Time specifications:
Fs = 8000; % samples per second
dt = 1/Fs; % seconds per sample
StopTime = 0.25; % seconds
t = (0:dt:StopTime-dt)'; % seconds
%%Sine wave:
Fc = 60; % hertz
x = cos(2*pi*Fc*t);
% Plot the signal versus time:
figure;
plot(t,x);
xlabel('time (in seconds)');
title('Signal versus Time');
zoom xon;
댓글 수: 0
sevde busra bayrak
2020년 8월 24일
sampling_rate = 250;
time = 0:1/sampling_rate:2;
freq = 2;
%general formula : Amplitude*sin(2*pi*freq*time)
figure(1),clf
signal = sin(2*pi*time*freq);
plot(time,signal)
xlabel('time')
title('Sine Wave')
댓글 수: 0
Ana Maria
2023년 3월 15일 14:50
Implement a function to generate a column vector containing a sine wave, sin(2πf(t)t), with a growing frequency, f(t) from f(0) = f1 to f(T) = f2. The inputs of the function are the duration, T in seconds, the frequencies, f1 and f2, in Hz and the sampling rate, fs, in samples per second x = chirpT one(T, f1, f2, fs)
댓글 수: 2
DGM
2023년 3월 15일 17:53
편집: DGM
2023년 3월 16일 1:37
You're copying and pasting an assignment text. This is not an answer, so it doesn't belong here as an answer. I'm compelled to keep things where they belong and remove them when they don't.
This is ultimately your task to perform. The information already present on this page is largely sufficient to complete it. I'm sure with enough effort, you can find even more specific examples elsewhere on the forum.
If you want to ask a question, please open a new question using the 'ask' button at the top of the page. If and when you do, ask an actual question, but also be prepared to prove that you've exhausted what due diligence provides.
EDIT:
To prove the point, I'm just going to grab the answer directly above and make one simple change. Other than changing the specific parameters (a matter of choice), the only real change is that instead of being a scalar, freq is a vector generated from two specified values.
% these are parameters
samplerate = 500;
duration = 2;
flim = [0 8];
% both these vectors have the same size
time = 0:1/samplerate:duration; % time is a linear vector
freq = linspace(flim(1),flim(2),numel(time)); % freq is a linear vector
Generating a vector of uniformly-spaced values is very basic MATLAB stuff. The remaining change necessary to make freq work as a vector is also basic (literally one single character), but I have to leave something for you to do.
참고 항목
범주
Find more on 2-D and 3-D Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!