Semantic Segmentation Issue with output size

조회 수: 3 (최근 30일)
Gabriel VH
Gabriel VH 2017년 10월 29일
댓글: Santo 2024년 9월 6일
Hello everyone,
I am trying to do a segmentation of a Brain Tumor MRI dataset, available in BRATS. But, after I ran my code, I got an error.
"Error using trainNetwork (line 140) Invalid training data. The output size (4) of the last layer doesn't match the number of classes (4).
Error in import_data_alternate2 (line 102) cnn = trainNetwork(trainingData,net,options);
Caused by: Error using nnet.internal.cnn.util.TrainNetworkDataValidator/assertCorrectResponseSizeForOutputLayer (line 217) Invalid training data. The output size (4) of the last layer doesn't match the number of classes (4)."
clear;
clc;
%Image dataset
pxl = dir('C:\Users\Osvaldo\Downloads\BRATS Data\Imagens\Patient 07\GT\*.png')';
img = fullfile('C:\Users\Osvaldo\Downloads\BRATS Data\Imagens\Patient 07\T1c\');
%Vector preallocation
ground_truth = cell(1,numel(pxl));
gt = cell(1,numel(pxl));
training_data = imageDatastore(img);
%Ground truth images
for k = 1:numel(pxl)
image = imageDatastore(pxl(k).name);
ground_truth{k} = image;
end
for k = 1:numel(pxl)
loc = ground_truth{1,k}.Files;
gt(k) = loc;
end
gt = gt';
classes = ["Edema" "Non-enhancing tumor" "Necrosis" "Enhancing tumor"];
labelIDs = [ ...
127 127 127; ... % "Edema"
190 190 190; ... % "Non-enhancing tumor"
63 63 63; ... % "Necrosis"
255 255 255; % "Enhancing tumor"
];
groundtruth = pixelLabelDatastore(gt,classes,labelIDs);
%CNN creation
inputSize = [429 492 3];
imgLayer = imageInputLayer(inputSize);
filterSize = 3;
numFilters = 32;
conv = convolution2dLayer(filterSize,numFilters,'Padding',1);
relu = reluLayer();
poolSize = 2;
maxPoolDownsample2x = maxPooling2dLayer(poolSize,'Stride',2);
downsamplingLayers = [
conv
relu
maxPoolDownsample2x
conv
relu
maxPoolDownsample2x
conv
relu
maxPoolDownsample2x
];
filterSize = 4;
transposedConvUpsample2x = transposedConv2dLayer(4,numFilters,'Stride',2,'Cropping',1);
upsamplingLayers = [
transposedConvUpsample2x
relu
transposedConvUpsample2x
relu
];
numClasses = 4;
conv1x1 = convolution2dLayer(1,numClasses);
finalLayers = [
conv1x1
softmaxLayer()
pixelClassificationLayer()
];
net = [
imgLayer
downsamplingLayers
upsamplingLayers
finalLayers
];
%CNN Training
trainingData = pixelLabelImageSource(training_data,groundtruth);
options = trainingOptions('sgdm', ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 100, ...
'MiniBatchSize', 64);
cnn = trainNetwork(trainingData,net,options);
Can someone help me?
  댓글 수: 1
Santo
Santo 2024년 9월 6일
Classification of brain tumor of brain mri images using cnn in matlab code . Please can you give?

댓글을 달려면 로그인하십시오.

채택된 답변

Arthur Fernandes
Arthur Fernandes 2017년 11월 7일
Hi Gabriel,
Apparently there is an difference between the output size and your classes. It is difficult to debug that since matlab doesn't explicit say the size of the output matrix... For your model to work you need to have the output at the same size as the ground truth. However, since you want to do segmentation, a better way to approach this in matlab is to use the function segnetLayers since it will ensure that the output is in accordance to the ground-truth and will automatically define the number of nodes in each layer. But you still have the flexibility to define the architecture of your network.
  댓글 수: 2
Gabriel VH
Gabriel VH 2017년 11월 28일
You, mister, are a genius! Thank you very much!
Farrukh nazir
Farrukh nazir 2020년 8월 15일
편집: Farrukh nazir 2020년 8월 15일
Yes, i was also receiving error between output size and network size using u-net. However using segnet, netwotk just started training.
Thanks.

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

abdulkader helwan
abdulkader helwan 2017년 12월 25일
numClasses = numel(categories(trainDigitData.Labels)); Then use this variable in the fully connected layer:
fullyConnectedLayer(numClasses).

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by