How could I translate this Python code to Matlab?

조회 수: 7 (최근 30일)
Gaëtan Poirier
Gaëtan Poirier 2017년 10월 26일
댓글: Audumbar Dhage 2019년 4월 29일
I have this python code that I would like to convert to Matlab code. Could anyone help me understand what is going on and help convert from one language to the other?
The code is as follows:
import random
N = 15
L = 10
sigma = 0.075
n_runs = 800
for runs in range(n_runs):
y = [random.uniform(0.0, L - 2 * N * sigma) for k in range(N)]
y.sort()
print [y[i] + (2 * i + 1) * sigma for 1 in range (N)]|
Much thanks to anyone who can assist me.
Update: I updated the code, if anyone can help, that would be great.
  댓글 수: 2
Gaëtan Poirier
Gaëtan Poirier 2017년 10월 26일
Could anyone help with the new code? The distribution is not correct.
Audumbar Dhage
Audumbar Dhage 2019년 4월 29일
I have Python code i want to convert it into matlab

댓글을 달려면 로그인하십시오.

채택된 답변

Andrei Bobrov
Andrei Bobrov 2017년 10월 26일
편집: Andrei Bobrov 2017년 10월 26일
N = 15;
L = 10;
sigma = 0.075;
n_configs = 100;
rejections = 0 ;
x = zeros(N,n_configs);
for config = 1:n_configs
while 1
x(:,config) = sort((L-2*sigma)*rand(N,1));
if min(diff(x(:,config))) > 2*sigma
break
end
end
end
or
LL = linspace(0,L,N+1)';
x = (L/N - 2*sigma)*rand(N,n_configs) + LL(1:end-1) + sigma;
  댓글 수: 2
Gaëtan Poirier
Gaëtan Poirier 2017년 10월 26일
편집: Gaëtan Poirier 2017년 10월 26일
Thank you so much for the answer! You may recognize this as a solution to the probability distribution to the random clothes-pins on a clothes-line problem (I hope!). However, I'm not getting the distribution I was hoping for. Both outputs are different.
Audumbar Dhage
Audumbar Dhage 2019년 4월 29일
I have to convert python code to matlab

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

harshi yaduvanshi
harshi yaduvanshi 2018년 4월 6일
i have this question i want to convert this python code to matlab.
import random;
import pandas as pd
import numpy as np
def sqrt_sum(a,b): return round(np.sqrt(np.sum((np.array(a)-np.array(b))**2)),5)
def weighted(W,d): return (np.multiply(W,d))
def partition(X,N,L,R,W):
#compute distances
p=[[] for i in range(N)]
w_dist=[]
for i in range(N):
for j in range(L):
dj=sqrt_sum(X.ix[i].tolist(),R[j])
p[i].append(dj)
wj=sum(weighted(W,p[i]))
w_dist.append(wj)
max_d=max(w_dist)
min_d=min(w_dist)
interval_length=(max_d - min_d)/L
#find ranges ranges=[] ranges.append(min_d) #find all ranges for j in range(L): rangej=min_d + interval_length min_d=rangej ranges.append(rangej)
X=X.values.tolist()
#now put the elements into range intancess
#############################################
pj=[[] for i in range(L)]
for i in range(N):
for j in range(len(ranges)-1):
if w_dist[i]>=ranges[j] and w_dist[i]<=ranges[j+1]:
pj[j].append(X[i])
return ranges,pj
def Search_phase(X,N,L,R,W,K,Q,ranges,pj): dq=0 knn=[] for j in range(L): d=sqrt_sum(Q,R[j]) dq=dq+weighted(W[j],d) for i in range(len(ranges)-1): if dq>=ranges[i] and dq<=ranges[i+1]: distance=[] for j in range(len(pj[i])): distance.append(float(sqrt_sum(Q,pj[i][j]))) distance=np.asarray(distance) lists=distance.argsort()[:5] for x in lists: knn.append(pj[i][x])
return knn
def fetching_data(): X=pd.read_csv("IRIS(2).csv",header=None) N=len(X) L=4 R = X.sample(L)
R=R.values.tolist()
W=[0.1,0.3,0.8,0.2]
K=5
Q=[0.196667,0.166667,0.389831,0.375000]
return X,N,L,R,W,K,Q
X,N,L,R,W,K,Q=fetching_data() ranges,pj=partition(X,N,L,R,W) KNN=Search_phase(X,N,L,R,W,K,Q,ranges,pj) print("top k-nn are",KNN)

카테고리

Help CenterFile Exchange에서 Call Python from MATLAB에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by