How to loop in a single line for the given statement

조회 수: 20 (최근 30일)
HIRAKJYOTI BASUMATARY
HIRAKJYOTI BASUMATARY 2017년 10월 12일
댓글: OCDER 2017년 10월 12일
Suppose i have a n * d matrix (2D datas) . Here n=2 , so i have been able to give 2 statements inside for loop to calculate the mean normalization. But if n would have been higher, then the number of statements inside for loop would increase. Is there a way i can write it in a single line.
function meannormalize
F = [1 1;1 1.5;1.5 1.5;5 5;5 5.5;5.5 5;6 5;10 7;10.5 6;9 7;10 8]';
[n dim]=size(F);
MEAN=mean(F,2)
for i=1:dim
F(1,i)=(F(1,i)-MEAN(1))/norm(F(1,i)-MEAN(1));
F(2,i)=(F(2,i)-MEAN(2))/norm(F(2,i)-MEAN(2));
end
end
  댓글 수: 6
Cam Salzberger
Cam Salzberger 2017년 10월 12일
If you are looking to normalize the data, you probably want norm(F-MEAN), as shown in my answer, as opposed to doing element-wise "normalization".
If you've got R2016a or before, you can do it with:
normVal = norm(F-repmat(MEAN, 1, size(F, 2)));
and then just divide that every loop, or in vectorized format.
OCDER
OCDER 2017년 10월 12일
Not familiar with k-means clustering, but are there 2 different "norm"? It seems you want to "Normalize" vectors in dimension D (row-wise) with respect to the "Euclidean norm" of that dimension's mean value, like this?
MEAN = mean(F, 2);
NORM = zeros(size(F));
for k = 1:size(F, 1)
NORM(k, :) = (F(k,:) - MEAN(k)) / norm(F(k,:) - MEAN(k));
end
NORM =
-0.4209 -0.4209 -0.3776 -0.0747 -0.0747 -0.0315 0.0118 0.3579 0.4012 0.2714 0.3579
-0.4946 -0.4291 -0.4291 0.0298 0.0953 0.0298 0.0298 0.2920 0.1609 0.2920 0.4231
Also, Matlab does have kmeans clustering function too, though not sure if it does what you want.

댓글을 달려면 로그인하십시오.

답변 (1개)

Cam Salzberger
Cam Salzberger 2017년 10월 12일
편집: Cam Salzberger 2017년 10월 12일
The norm of a scalar is just going to be the absolute value, so that can be easily removed. Then you're doing basically (a - b)/abs(a - b). Which is just sign(a - b).
This works in R2016b+ due to implicit expansion:
sign(F-MEAN)
Otherwise, you can get fancy with repmat:
sign(F-repmat(MEAN, 1, size(F,2)))
For your future use, here's how you could do a double loop:
for jj = 1:dim
for ii = 1:n
F(ii, jj) = (F(ii, jj)-MEAN(ii))/norm(F(ii, jj)-MEAN(ii));
end
end
But it's easier to just vectorize the whole thing (R2016b+):
F = (F-MEAN)./norm(F-MEAN);
This will be a different result since the norm will actually be a scalar value (since it's taking the norm of the whole matrix. Not sure if that's what you really wanted. If not, you can take the "norm" of each scalar with just:
F = (F-MEAN)./abs(F-MEAN);
-Cam
  댓글 수: 1
HIRAKJYOTI BASUMATARY
HIRAKJYOTI BASUMATARY 2017년 10월 12일
Thank you very much sir. I will definitely keep this technique in mind

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Creating and Concatenating Matrices에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by