Info
이 질문은 마감되었습니다. 편집하거나 답변을 올리려면 질문을 다시 여십시오.
Widrow-Hoff delta rule method with linear layer (adaline)
조회 수: 1 (최근 30일)
이전 댓글 표시
i want to use learnwb which Widrow-Hoff delta rule (also known as least mean square (LMS) algorithm) and updatesits weights and bias when a training sample is presented. this is my code x=401*113 y=1*113 net = linearlayer(0,0.001); net = configure(net,x,y); net.trainFcn = 'trainb'; net.trainParam.epochs = 788; net=train(net,x,y); outputs=net(x); e=output-y ee=e.^2 eee=sum(ee) rmse=sqrt(mean(eee)); zz= postreg (outputs , y) but my error is root mean square error is very high ? could you please give my some suggestion ? is it my training method correct ?
댓글 수: 1
Stephen23
2017년 9월 27일
duplicate:
https://www.mathworks.com/matlabcentral/answers/358528-widrow-hoff-delta-rule-method-with-linear-layer-adaline
답변 (0개)
이 질문은 마감되었습니다.
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!