Surface area from a z-matrix
조회 수: 34 (최근 30일)
이전 댓글 표시
I have x, y axis values and corresponding z values. This allows me to plot the shape using surf function. Example:-
How to calculate surface area of this irregular shape?
Please i'm a novice learning this stuff, i have come along quite well since last week or two. Thank you for all your help. The other answers provided before for irregular shapes have me confused, since i don't know how to triangulate.
Additionally i also want to calculate surface area above a certain height. So i'll cut all the values below a certain height and then possibly calculate surface area above a cut-off height.
Edit:
Thanks to inputs by the community and basically whole programme written by Richard. Here's the code.
function sa(Z, cutoff)
%Credit: Richard Brown, MATLAB central forum (http://www.mathworks.com/matlabcentral/answers/)
dx=0.092; % x-axis calibration
dy=0.095; % y-axis calibration
[m, n] = size(Z);
areas = 0.5*sqrt((dx*dy)^2 + (dx*(Z(1:m-1,2:n) - Z(1:m-1,1:n-1))).^2 + ...
(dy*(Z(2:m,1:n-1) - Z(1:m-1,1:n-1))).^2) + ...
0.5*sqrt((dx*dy)^2 + (dx*(Z(1:m-1,2:n) - Z(2:m,2:n))).^2 + ...
(dy*(Z(2:m,1:n-1) - Z(2:m,2:n))).^2);
zMean = 0.25 * (Z(1:m-1,1:n-1) + Z(1:m-1,2:n) + Z(2:m,1:n-1) + Z(2:m,2:n));
areas(zMean <= cutoff) = 0;
surfaceArea = sum(areas(:));
sprintf('Total surface area is %2.4f\n', surfaceArea)
return
end
댓글 수: 1
Richard Brown
2013년 7월 15일
편집: Richard Brown
2013년 7월 15일
I've just had it pointed out to me that there is a small mistake in this code. Assuming that x corresponds to columns, and y to rows, then the first two lines (but not the second two lines) of the areas calculation has dx and dy backwards. I've fixed it in my original answer below.
채택된 답변
Richard Brown
2012년 4월 16일
편집: Richard Brown
2013년 7월 15일
OK, well how about splitting each quadrilateral into two triangles, and just summing up the areas? I'm sorry there's no way I can make this look pleasant, but ...
[m, n] = size(Z);
areas = 0.5*sqrt((dx*dy)^2 + (dy*(Z(1:m-1,2:n) - Z(1:m-1,1:n-1))).^2 + ...
(dx*(Z(2:m,1:n-1 - Z(1:m-1,1:n-1)))).^2) + ...
0.5*sqrt((dx*dy)^2 + (dx*(Z(1:m-1,2:n) - Z(2:m,2:n))).^2 + ...
(dy*(Z(2:m,1:n-1) - Z(2:m,2:n))).^2)
surfaceArea = sum(areas(:))
edit: Jul 15, 2013 There was a mistake, and dx and dy were backwards in the first two lines of the code. The code has been corrected now.
댓글 수: 3
Richard Brown
2012년 4월 16일
For each of the areas in the 'areas' array, you could work out the mean Z value
zMean = 0.25 * (Z(1:m-1,1:n-1) + Z(1:m-1,2:n) + Z(2:m,1:n-1) + Z(2:m,2:n))
and then
areas(zMean > cutoff) = 0;
surfaceArea = sum(areas(:));
It's a bit sloppy - you should probably do this for the individual triangles, but it will certainly give you a reasonable approximation
추가 답변 (3개)
Walter Roberson
2012년 4월 15일
I do not know if you will be able to calculate the surface area of the regular shape interspersed with the irregular tops. When I look at the image with the irregular tops, it looks to me as if the tops are fairly irregular, possibly even fractal. I don't know if a meaningful surface area could be calculated: the surface area of a fractal is infinite.
For the first figure, I can think of a crude way to find the area, but I think there are simpler ways. I would need to think further about good ways to find the area. But to cross-check: are your x and y regularly spaced, or irregularly ?
댓글 수: 7
Sean de Wolski
2012년 4월 16일
I wasn't commenting on Richard's script at all, but rather the fractal nature of surface area (and length) of irregular shapes. I apologize if that came across the wrong way.
http://www.google.com/#hl=en&gs_nf=1&cp=19&gs_id=1k&xhr=t&q=how+long+is+the+coast+of+britain&fp=46b06bf633a62cc4
Richard Brown
2012년 4월 16일
If your data is smooth enough (assuming that's what you're after), then there is a really quick way to work out approximately the surface area, using the normals that Matlab computes when plotting the surface. To make it simple I'll assume you have a uniform grid with spacings dx and dy.
dA = dx * dy;
h = surf( ... )
N = get(h, 'VertexNormals');
N_z = squeeze(N(:, :, 3));
% Normalise it
N_z = N_z ./ sqrt(sum(N.^2, 3));
Area = dA * sum(1./N_z(:));
댓글 수: 3
Richard Brown
2012년 4월 16일
Hence my comment about smoothing - if you apply that straight to the mesh you've got there, all bets are off! Anyway, see my next answer, it might be more in line with what you're after.
참고 항목
카테고리
Help Center 및 File Exchange에서 Volume Visualization에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!