Speed up fminbnd using vectorization

조회 수: 3 (최근 30일)
Luca Gagliardone
Luca Gagliardone 2017년 8월 12일
편집: Matt J 2018년 5월 24일
I am trying to optimize this piece of code. I am using the function fminbnd on a vector, splitting the task on its single entries using a loop.
Would it be possible to speed it up vectorizing the process?
for i = 1:A
for ii= 1:B
for iii = 1:C
fun = @(x) (x * variable(i,ii,iii))^2 ;
[arg_min(i,ii,iii), min_(i,ii,iii)] = fminbnd(fun,0,2);
end
end
end
Thanks for the attention.
Sincerely
Luca

채택된 답변

Matt J
Matt J 2017년 8월 12일
In your example, the solution is always x=0, so a trivial vectorized solution would be
arg_min=zeros(A,B,C);
min_ = arg_min;
More generally, no, vectorization will not help in a situation like this. You could consider parallelizing the loop using PARFOR.

추가 답변 (2개)

Luca Gagliardone
Luca Gagliardone 2017년 8월 16일
편집: Luca Gagliardone 2017년 8월 16일
What if I create a vector x containing all the possible values for minimization:
x = permute(repmat([0:0.01:2]',[1,A,B,C]),[2,3,4,1]);
variable2 = repmat(variable,[1,1,1,length(x)]);
fun = (x .* variable2).^2;
min_ = min(fun,[],4);
That would do an approximation of the above? Thanks.
Luca

Nick Durkee
Nick Durkee 2018년 5월 24일
편집: Matt J 2018년 5월 24일
I actually developed a solution to this problem for my research. It's available on the file exchange.

카테고리

Help CenterFile Exchange에서 Optimization에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by