LogLikelihood for Gaussian Process regression (function: `fitgpr`) for given set of hyperparameter

조회 수: 3 (최근 30일)
I am interested in calculating LogLikelihood using Gaussian Process for given hyperparameters and noise parameter i.e. without optimizing for parameters.
In the following example; [3.5, 6.2, 0.2] are provided as parameters and since 'FitMethod' is 'none' fitgpr will not optimize for parameters
load(fullfile(matlabroot,'examples','stats','gprdata2.mat'))
sigma0 = 0.2;
kparams0 = [3.5, 6.2];
gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential',...
'FitMethod','none', 'KernelParameters',kparams0,'Sigma',sigma0);
ypred2 = resubPredict(gprMdl2);
but variable gprMdl2.LofLikelihood = [ ], I am interested in LogLikelihood precisely for parameters [3.5, 6.2, 0.2] not for optimized ones.
Thanks
This question is in continuation to this post.

채택된 답변

Gautam Pendse
Gautam Pendse 2018년 2월 6일
Hi Pankaj,
Loglikelihood is not calculated for 'FitMethod','none'. As a temporary workaround, there is an undocumented internal feature that does this calculation:
gprMdl2.Impl.computeLogLikelihoodExact()
Hope this helps,
Gautam

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Gaussian Process Regression에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by