이 질문을 팔로우합니다.
- 팔로우하는 게시물 피드에서 업데이트를 확인할 수 있습니다.
- 정보 수신 기본 설정에 따라 이메일을 받을 수 있습니다.
Optimize two objective functions using fmincon
조회 수: 34 (최근 30일)
이전 댓글 표시
safi58
2017년 7월 26일
I have two objective functions which would optimize same variables. I have done the optimization individually and they are working fine. Now, I need to incorporate those two objective functions in fmincon. Is there any way to do it?
댓글 수: 3
Torsten
2017년 7월 26일
You must specify how you form the new objective function from the two individual objectives within the "mixed" optimization.
Best wishes
Torsten.
Torsten
2022년 1월 21일
If you want to buy a meal of high quality, you get a different food composition as if you want a low-priced meal.
If you define some standard for the quality, you can get the lowest-priced meal with this prescribed quality.
So there is a curve that - given a certain quality of the meal - gives you the meal with the lowest price for this quality. This is called "pareto-optimum":
So you must first decide how to weigh the two criteria from your two optimizations to get a common optimum.
채택된 답변
Walter Roberson
2017년 7월 26일
댓글 수: 23
safi58
2017년 7월 27일
I understand what you are trying to say. But in my case it is possible to incorporate two objective functions theoretically. I am just not sure how to do the coding?
safi58
2017년 7월 27일
eta=po/(po+loss)
this is my objective function for both methods though the loss equation is different.
Walter Roberson
2017년 7월 27일
Can po or loss be negative? Are po and loss both functions of some variable(s) or is po possibly constant?
safi58
2017년 7월 27일
po or loss cannot be negative. po and loss are both functions of same variable(s) and po is constant.
Walter Roberson
2017년 7월 27일
If po is constant, then maximizing eta is the same as minimizing loss, and there is no need to calculate eta . (If you are trying to minimize eta, then that would be the same as maximizing loss, which seldom makes sense unless you are trying to produce something like Vanta Black.)
So... you have two loss functions and you want to minimize both of them. But how important is minimizing one compared to the other? Are the two even on the same scale? Is the scale linear?
But you do not seem to be concerned about that, only about getting some formula. So just minimize the sum of the squares of the two losses.
safi58
2017년 7월 28일
편집: Walter Roberson
2017년 7월 28일
yes, minimizing loss would be the main issue. These are my two individual equations for optimization.
% [x,fval,exitflag] = fmincon(@(x)OPTM_1(x),x0,A,b,Aeq,beq,lb,ub,@(x)Constraints_1(x),options);
[x,fval,exitflag] = fmincon(@(x)OPTM_2(x),x0,A,b,Aeq,beq,lb,ub,@(x)Constraints_2(x),options);
I am not sure how I would go from there?
Walter Roberson
2017년 7월 28일
If each of those functions, OPTM_1 and OPTM_2 emit an eta value (rather than a loss directly), then they will be larger when the loss is least, so you would be wanting to minimize their negative when minimizing individually. However, if you square a negative then you get a positive, so you do not need the negative for the joint minimization:
joint_obj = @(x) OPTM_1(x).^2 + OPTM_2(x).^2;
joint_constraint = @(x) merge_constraints(x, @Constraints_1, @Constraints_2);
[x,fval,exitflag] = fmincon(joint_obj, x0, A, b, Aeq, beq, lb, ub, joint_constraint, options)
togther with
function [merged_c, merged_ceq] = merge_constraints(x, cfun1, cfun2)
[c1, ceq1] = cfun1(x);
[c2, ceq2] = cfun2(x);
merged_c = [c1(:); c2(:)];
merged_ceq = [ceq1(:); ceq2(:)];
In the special case where you have no linear equality constraints, instead of the merge_constraints function I show here, you could instead use
VEC = @(M) M(:);
joint_constraint = @(x) deal([VEC(Constraints_1(x); VEC(Constraints_2(x)], []);
This assumes that your constraint functions might return arrays or vectors of uncertain orientation. In some cases you might be able to reduce down to
joint_constraint = @(x) deal([Constraints_1(x), Constraints_2(x)], [])
safi58
2017년 7월 28일
편집: Walter Roberson
2017년 7월 28일
But I want to do minimize loss first individually and then calculate eta from that for each case and do something like this,
f(x)=eta1^2+eta2^2
and then the optimization problem will become like this.
min f(x)
where f(x) is again the function of the same variables.
Walter Roberson
2017년 7월 28일
If you minimize the losses individually first and calculate eta values from the minimized loss, then you will get out two numeric values, not a function. Notice that you write
f(x) = eta1^2 + eta2^2
but x does not appear on the right hand side, because eta1 and eta2 are constant in x at that point.
safi58
2017년 7월 31일
What I am trying to do is:
% eta1(x)=po/(po+loss1(x))
eta2(x)=po/(po+loss2(x))
then,
% optm1=arg(max(eta1))
optm2=arg(max(eta2))
after finding that the objective function will become
% f(x)=[optm1-eta1(x)]^2+[optm2-eta2(x)]^2
then the optimization problem will become like this.
% min f(x)
with constraint set
Walter Roberson
2017년 7월 31일
[optm1, foptm1, exitflag] = fmincon(@(x) -eta1(x), x0, A, b, Aeq, beq, lb, ub, @(x)Constraints_1(x), options);
[optm2, foptm2, exitflag] = fmincon(@(x) -eta2(x), x0, A, b, Aeq, beq, lb, ub, @(x)Constraints_2(x),options);
f = @(x) (optm1 - eta1(x)).^2 + (optm2 - eta2(x)).^2
Look at that more carefully. arg(max(eta1)) is the argument that maximizes eta1, and your eta1 is a function of several variables so the argument that maximizes it is going to be a vector. Then in f, you are taking the vector of locations, and subtracting from it a function value . This should suggest to you that you are doing the wrong thing.
It would make more sense if you had
optim1 = eta1( arg(max(eta1)) )
that is, the function value at the place that it is maximized. For the code I gave on the first two lines, that would correspond to
f = @(x) (foptm1 - eta1(x)).^2 + (foptm2 - eta2(x)).^2
which would be a distance from the maximum points.
safi58
2017년 8월 3일
Hi Walter, just a bit of query. Should I put these two equation in two different .m files?
if true
% [optm1, foptm1, exitflag] = fmincon(@(x) -eta1(x), x0, A, b, Aeq, beq, lb, ub, @(x)Constraints_1(x), options);
[optm2, foptm2, exitflag] = fmincon(@(x) -eta2(x), x0, A, b, Aeq, beq, lb, ub, @(x)Constraints_2(x),options);
then where should I put this one?
if true
%f = @(x) (optm1 - eta1(x)).^2 + (optm2 - eta2(x)).^2
end
safi58
2017년 8월 4일
It becomes so cumbersome. so I start to follow the old path.
joint_obj = @(x) OPTM_1(x).^2 + OPTM_2(x).^2;
joint_constraint = @(x) merge_constraints(x, @Constraints_1, @Constraints_2);
[x,fval,exitflag] = fmincon(joint_obj, x0, A, b, Aeq, beq, lb, ub, joint_constraint, options)
but it is giving me the this error
FMINCON requires all values returned by user functions to be of data type double.
safi58
2017년 8월 4일
It seems to be working now. in my original one I wrote
[x,fval,exitflag] = fmincon(@(x) joint_obj, x0, A, b, Aeq, beq, lb, ub, joint_constraint, options)
that's why it was not working.
the correct code should be
[x,fval,exitflag] = fmincon(joint_obj, x0, A, b, Aeq, beq, lb, ub, joint_constraint, options)
safi58
2017년 8월 4일
After the optimization, is it possible to find eta from this equation
eta=po/(po+loss)
where the objective function is
% joint_obj = @(x) loss_1(x).^2 + loss_2(x).^2;
safi58
2017년 8월 7일
While I was doing that it is giving me this error
Function 'subsindex' is not defined for values of class 'function_handle'
safi58
2017년 8월 9일
another question on that, how would I know that from these two methods optimization is following which one?
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Get Started with Optimization Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!오류 발생
페이지가 변경되었기 때문에 동작을 완료할 수 없습니다. 업데이트된 상태를 보려면 페이지를 다시 불러오십시오.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)