Employing SOM after PCA

조회 수: 1 (최근 30일)
naghmeh moradpoor
naghmeh moradpoor 2017년 6월 30일
댓글: Greg Heath 2017년 7월 3일
Hello,
I have applied PCA on my dataset and found out my first three variables together explained 93% of the total variance. So I decided to use only first 3 variables for SOM instead of 8 variables. I have total of 2643 observations in my dataset. There are two possible classification that I expect the SOM gives me but I don't know how to force SOM to do 2 classifications instead of 4. I use GUI for this and I would appreciate if anybody could help me with this.
Regards,
Naghmeh

채택된 답변

Greg Heath
Greg Heath 2017년 7월 1일
편집: Greg Heath 2017년 7월 1일
1. PCA ranks principal components, not original variables. So, did you deduce 3 variables from the 3 principal components?
2. PLSREGRESS ranks original variables. Use that instead.
3. SOM is an unsupervised clustering algorithm that ignores classes, IT IS NOT A CLASSIFIER!
4. PATTERNNET is a NEURAL NETWORK SUPERVISED CLASSIFIER. If you are familiar with NNs, use that.
5. Otherwise, search the STATISTICS TOOLBOX for classifiers.
6 Meanwhile, search both NEWSGROUP and ANSWERS using
CLASSIFICATION
Hope this helps.
Thank you for formally accepting my answer
Greg
  댓글 수: 3
Greg Heath
Greg Heath 2017년 7월 3일
Do not use PCA and/or SOM for supervised classification.
Greg
Greg Heath
Greg Heath 2017년 7월 3일
However, if you have UNLABELED data and want to divide it into clusters to determine where individual classes might be, SOM and PCA + SOM are appropriate.
Hope this is clear.
Greg

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by