Undefined function 'VAD' for input arguments of type 'double'.

조회 수: 1 (최근 30일)
maheesha madhubashini
maheesha madhubashini 2017년 5월 20일
답변: Walter Roberson 2017년 5월 20일
I have use following downloaded code for convert speech to text.
% % traning phase
clc; clear;close all
w = warning ('off','all');
Fs=8000;
% % For the word "ONE"
filepart1='myrecordone';
filepart2='.wav';
% % check for signal length
% % we will append zeros after VAD to make sure all the signals are of
% % equal length
% % We need same number of MFCC of each signal
length_all_sig=[];
for i=1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
length_all_sig=[length_all_sig length(filt_signal)];
end
max_length=max(length_all_sig);
all_data_one=[];
for i = 1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
if length(filt_signal)==max_length
[cepstra1,aspectrum,pspectrum] = melfcc(y1,Fs,'wintime',0.025,'hoptime',0.010);
else
filt_signal=[filt_signal' zeros(1,max_length-length(filt_signal))];
[cepstra1,aspectrum,pspectrum] = melfcc(filt_signal,Fs,'wintime',0.025,'hoptime',0.010);
end
all_data_one=[all_data_one cepstra1];
end
% % For the word "TWO"
all_data_two=[];
filepart1='myrecordtwo';
length_all_sig=[];
for i=1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
length_all_sig=[length_all_sig length(filt_signal)];
end
max_length=max(length_all_sig);
for i = 1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
if length(filt_signal)==max_length
[cepstra2,aspectrum,pspectrum] = melfcc(y1,Fs,'wintime',0.025,'hoptime',0.010);
else
filt_signal=[filt_signal' zeros(1,max_length-length(filt_signal))];
[cepstra2,aspectrum,pspectrum] = melfcc(filt_signal,Fs,'wintime',0.025,'hoptime',0.010);
end
all_data_two=[all_data_two cepstra2];
end
% % For the word "THREE"
all_data_three=[];
filepart1='myrecordthree';
length_all_sig=[];
for i=1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
length_all_sig=[length_all_sig length(filt_signal)];
end
max_length=max(length_all_sig);
for i = 1:10
filename=strcat(filepart1,num2str(i),filepart2);
y1=wavread(filename);
results = VAD(y1,0.1,0.025,0.0125,20,1);
ind_st=(0:size(results)-1)*200+1;
ind_en=(1:size(results))*200;
ind1=ind_st(logical(results));
ind2=ind_en(logical(results));
all_ind=cell2mat(arrayfun(@colon,ind1,ind2,'uni',0));
filt_signal=y1(all_ind);
if length(filt_signal)==max_length
[cepstra3,aspectrum,pspectrum] = melfcc(y1,Fs,'wintime',0.025,'hoptime',0.010);
else
filt_signal=[filt_signal' zeros(1,max_length-length(filt_signal))];
[cepstra3,aspectrum,pspectrum] = melfcc(filt_signal,Fs,'wintime',0.025,'hoptime',0.010);
end
all_data_three=[all_data_three cepstra3];
end
% % Building model
X=[all_data_one'];
options = statset('MaxIter',500,'Display','final');
obj1 = gmdistribution.fit(X,8,'CovType',...
'diagonal','Options',options);
X=[all_data_two'];
obj2 = gmdistribution.fit(X,8,'CovType',...
'diagonal','Options',options);
X=[all_data_three'];
obj3 = gmdistribution.fit(X,8,'CovType',...
'diagonal','Options',options);
% % Test data
test_data=cepstra1';
% test_data=cepstra1';
% test_data=cepstra2';
% % Word recognition
[~,nlogl1] = posterior(obj1,test_data);
[~,nlogl2] = posterior(obj2,test_data);
[~,nlogl3] = posterior(obj3,test_data);
log_like=[nlogl1 nlogl2 nlogl3];
[~,Spoken_word]=min(log_like)
but it gives
Error in main4 (line 26)
results = VAD(y1,0.1,0.025,0.0125,20,1);
what should I do for this
  댓글 수: 1
Image Analyst
Image Analyst 2017년 5월 20일
You can either format your code like explained here or you can attach it with the paper clip icon.
Did you write VAD yourself? If not, do you know where it's located on your computer? If not, then why do you think MATLAB should know anything at all about this function?

댓글을 달려면 로그인하십시오.

답변 (1개)

Walter Roberson
Walter Roberson 2017년 5월 20일

카테고리

Help CenterFile Exchange에서 Speech Recognition에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by