# How can I convert serial data to a binary sequence?

조회 수: 42(최근 30일)
Brendan Lyden 2017년 3월 16일
편집: MathWorks Support Team 2021년 6월 24일
> The sequence is 01011010 how can I change from the square wave shown here to a square wave that shows just 01011010? The data rate is 600 bits per second and I am sampling at about 3 times that. Thank you.
##### 댓글 수: 4표시숨기기 이전 댓글 수: 3
Walter Roberson 2017년 3월 19일
I see in the other discussion that you are sampling at about 3000 samples per second. 208 samples at 3000 samples per second of 600 data bits per second would only be enough samples for 5 complete repetitions.
Question: are you sending async or synchronous? If you are sending async with RS232 then you need to worry about start bits and stop bits, and you have to know the number of each; pretty much everyone uses 1 start bit, but the number of stop bits used varies a bit. Asynch implies that the transitions need to be detected rather than assuming a fixed frequency.
It would also be important to know if you are using a protocol such as bisync or NRZ or NRZI.

댓글을 달려면 로그인하십시오.

### 채택된 답변

John BG 2021년 6월 24일
편집: MathWorks Support Team 2021년 6월 24일
There are a couple ways to do this. The comments below are referring to John's initial Answer (Approach 2).
Approach 1:
For the first approach, we've included a Simulink model.
Convert this analog serial signal into a digital signal, we will use a comparator.  This will generate a series of 1s and 0s at “around 1800 Samples/second.”  Then we will down-sample, but since we don’t know the exact original sample rate we have used interp1() instead of downsample().  This has the added benefit of handling nonuniform input sample rates but requires a time value for each sample.  It generates our stream of 1s and 0s at 600 S/s.  We can get away with this because the incoming symbol rate is exactly 600 b/s, therefore sampling at that rate guarantees us one sample per symbol (bit).  More care may be needed to apply this approach to jittery signals.  Finally, we can do digital processing to recover the input signal. In this case, we know the first 8 elements of this sequence will be our input data word. Additionally, we can plot the first 9 elements to see a graphical representation (the extra element helps the graph look as expected).
Approach 2:
1) square the signal the time reference is not really needed. Clipping
x(x>500)=500;
x(x<250)=200;
2) Brendan, please let know if the following reasoning is consistent with your question:
in order to use the 600bps rate one has to know the time reference.
Visual observation reveals that about 15 samples make the 8 pulses of the basic sequence.
7 bursts take the whole scope shown, that comprises 2840-2640, 200 samples
200 samples are (approximately) 7*8=56 pulses
If you have assigned 1 bit per pulse, an estimate of the presented time span would be:
56[pulses]*1[bit/pulse]*1[sec]/600[bps]*200[samples]=15 seconds
it would be safer to assign at least 3 samples per pulse.
3) synchronisation, how do want to sync?
4) can you present a time based graph? with the time vector, not the numerals. Meaning, can you, instead of
plot(x)
do
plot(tx,x)
If you find this answer useful would you please be so kind to mark my answer as Accepted Answer?
To any other reader, please if you find this answer
please click on the thumbs-up vote link
John BG
##### 댓글 수: 9표시숨기기 이전 댓글 수: 8
Walter Roberson 2017년 3월 21일
"if sync happened the previous word and missed, doesn't matter, the circuit should catch up on next word."
That depends on it being an asynch protocol, which we do not know. It might be a synchronous protocol.
Synchronous protocols have two basic variations:
A) synchronization is signaled (somehow), and for a period of time after that, clocks are assumed to stay in sync to within half of a bit time, so that the total timing difference between sender and receiver is less than 1 bit during the block. After that period, synchronization is re-established for another burst. If I recall correctly, I have heard this referred to as a "block sync protocol"
B) synchronization is continual and not block oriented. The protocol is arranged so that there is a guaranteed transition within a certain number of bits no matter what the source. This can be by "stuffing" a transition if needed that is removed from the data stream on the receiver; or it can be by using two or more different constellation encodings for groups of bits and switching to the alternate constellation if continuing in the same encoding would otherwise have failed the transition guarantee. Each transition regenerates the clock for the receiver, so instead of it being a fixed block size after a block sync during which the clock is considered to be valid, every received transmission effectively restarts a timer. This kind of protocol can go on indefinitely, but there are usually built in safeguards so that you can determine the initial boundary in the first place, and also safeguards to periodically re-establish the major boundary in case the link dropped. These often involve deliberate protocol violations.
"you are suggesting to apply a set of masks and tell whether the word is detected"
I am suggesting no such thing.
Async protocols typically have mandatory silence gaps, and extra non-data bits or extra transitions to set up framing for the following byte (which could be 5 to 11 data bits); or (much less commonly) framing for two bytes. Those mandatory silence gaps and extra bits or transitions leave visible traces on the signal. It is far from clear that we are seeing those traces here; we are not seeing the sort of traces that would be associated with RS232, RS422, or TTL, even if we were to suppose that the y axis has been mislabeled.
Synchronous protocols vary in how they handle timing and synchronization, but by definition for synchronous protocols, it is never at the bit or byte level. Any protocol that synchronizes each byte independently is, by definition, an asynchronous protocol.

댓글을 달려면 로그인하십시오.

### 추가 답변(1개)

fateme zabihi 2021년 3월 8일
hello
I have a 4-bit output as a pulse that I want to multiply by 8, 4, 2, and 1 based on the importance of the bits and see the final output. What should I do?

댓글을 달려면 로그인하십시오.

### 범주

Find more on Pulse and Transition Metrics in Help Center and File Exchange

### 태그

아직 태그를 입력하지 않았습니다.

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by