# How to calculate Akaike Information Criterion and BIC from a Neural Network?

조회 수: 114(최근 30일)
Javier Bastante 2017년 2월 13일
답변: David Franco 2017년 8월 28일
I know "aic" function exists, but I don't know how to use it with fitting neural networks.
Any help?

댓글을 달려면 로그인하십시오.

### 답변(2개)

David Franco 2017년 8월 28일
After training the network and simulating the outputs:
[net,tr] = train(net,inputs,targets);
output = sim(net,inputs);
Get the parameters and calculate de criterions (Sarle, 1995):
% Getting the training targets
SSE = sse(net,trainTargets,output); % Sum of Squared Errors for the training set
n = length(tr.trainInd); % Number of training cases
p = length(getwb(net)); % Number of parameters (weights and biases)
% Schwarz's Bayesian criterion (or BIC) (Schwarz, 1978)
SBC = n * log(SSE/n) + p * log(n)
% Akaike's information criterion (Akaike, 1969)
AIC = n * log(SSE/n) + 2 * p
% Corrected AIC (Hurvich and Tsai, 1989)
AICc = n * log(SSE/n) + (n + p) / (1 - (p + 2) / n)
References:
• Akaike, H. (1969), "Fitting Autoregressive Models for Prediction". Annals of the Institute of Statistical Mathematics, 21, 243-247.
• Hurvich, C.M., and Tsai, C.L. (1989), "Regression and time-series model selection in small samples". Biometrika, 76, 297-307.
• Sarle, W.S. (1995), "Stopped Training and Other Remedies for Overfitting". Proceedings of the 27th Symposium on the Interface of Computing Science and Statistics, 352-360.
• Schwarz, G. (1978), "Estimating the Dimension of a Model". Annals of Statistics, 6, 461-464.
##### 댓글 수: 0표시숨기기 이전 댓글 수: -1

댓글을 달려면 로그인하십시오.

Michelle Wu 2017년 2월 17일
편집: Michelle Wu 2017년 2월 17일

댓글을 달려면 로그인하십시오.

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!