필터 지우기
필터 지우기

Is it possible to index which variables to extract after Principle Component Analysis?

조회 수: 2 (최근 30일)
Hi All,
I am a little confused as to how I can determine which variables I want after running my data matrix X through the pca funtion.
[coeff,score,latent,tsquared,explained,mu] = pca(X);
I have a 1000x16 dataset. I know from the 'explained' output that 95% of my feature variability can be explained by 7 variables.
Is there a way of determining which 7 variables (which columns numbers from the original X matrix) these are through indexing from the original X matrix,coeff, scores matrix?
Any help would be greatly appreciated here.

채택된 답변

the cyclist
the cyclist 2017년 1월 13일
편집: the cyclist 2017년 1월 14일
It will not be 7 of your original variable that explain 95% of the variation. This is an important concept to understand.
Rather, it will be 7 of the new variables, each of which is a linear combination of your original variables, that will explain the variation. Each column of coeff is the weight of the original variable. The first 7 columns of coeff are what you want.
  댓글 수: 1
sh10101
sh10101 2017년 1월 14일
Thanks for clearing this up!
So are the first 7 columns of coeff what I can now build my model using?

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by