Simscape Model source code

조회 수: 20 (최근 30일)
Ryan Goodfellow
Ryan Goodfellow 2016년 11월 18일
답변: Anjali 2024년 1월 2일
I have created a Simscape model by dragging dropping and connecting various components from the electrical foundation library. Now I am interested in looking at the underlying Simscape language source code of the interconnected components. This is similar to how I use OpenModelica for example. How do I do this? I have figured out how to view the source for a single component, but not the entire composition that is in my .slx file. The underlying goal here is to have a look at the DAEs and their interconnections.
Thanks!
~ry

답변 (4개)

Lucas Lebert
Lucas Lebert 2016년 12월 6일
Hi Ryan, you can access the source code of every block from the Simscape Foundation Library->Electrical, if you double click on the block and click on the link "Source Code". However this is not possible for blocks of the Simscape Electronics library. There is no option to access the source code of these blocks. The functionality of these blocks is explained in detail in the MATLAB documentation though.
  댓글 수: 2
Ryan Goodfellow
Ryan Goodfellow 2016년 12월 21일
Hi Lucas,
Thanks for the response, but it does not address the question. I have already stated that I know how to get the equations for a particular component. What I want is the DAE equation system for a composition of components that I create in the designer interface. I require these equations to run a structural analysis algorithm I have coded.
liqun fang
liqun fang 2022년 4월 25일
Hey , have you solved this problem?

댓글을 달려면 로그인하십시오.


Rafa Fernan
Rafa Fernan 2017년 11월 21일
Hi Ryan,
I'm looking for the same topic, how I can get the DAE equation system of my simscape system. Did you get it Ryan?
Regards Rafa

Anjali
Anjali 2024년 1월 2일
% DC Servo Motor Control System
% Motor parameters J = 0.01; % Inertia b = 0.1; % Damping coefficient K = 0.01; % Motor constant R = 1; % Resistance L = 0.5; % Inductance
% Transfer function of the motor numerator = K; denominator = [J*L (J*R + L*b) (R*b + K^2)];
G = tf(numerator, denominator);
% Proportional-Integral (PI) Controller Kp = 10; % Proportional gain Ki = 1; % Integral gain
controller = pid(Kp, Ki);
% Closed-loop system closedLoopSystem = feedback(G * controller, 1);
% Time vector t = 0:0.01:5;
% Step response of the closed-loop system step(closedLoopSystem, t); title('DC Servo Motor Control System Step Response'); xlabel('Time (seconds)'); ylabel('Position');
% Displaying the closed-loop t

Anjali
Anjali 2024년 1월 2일
% DC Servo Motor Control System
% Motor parameters J = 0.01; % Inertia b = 0.1; % Damping coefficient K = 0.01; % Motor constant R = 1; % Resistance L = 0.5; % Inductance
% Transfer function of the motor numerator = K; denominator = [J*L (J*R + L*b) (R*b + K^2)];
G = tf(numerator, denominator);
% Proportional-Integral (PI) Controller Kp = 10; % Proportional gain Ki = 1; % Integral gain
controller = pid(Kp, Ki);
% Closed-loop system closedLoopSystem = feedback(G * controller, 1);
% Time vector t = 0:0.01:5;
% Step response of the closed-loop system step(closedLoopSystem, t); title('DC Servo Motor Control System Step Response'); xlabel('Time (seconds)'); ylabel('Position');
% Displaying the closed-loop t

카테고리

Help CenterFile Exchange에서 Electrical Sensors에 대해 자세히 알아보기

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by