Is there a way to plot a confusion matrix of the cross validation results?
조회 수: 4 (최근 30일)
이전 댓글 표시
Can somebody tell me how to plot a confusion matrix of the crossval result?
CVMdl = crossval(classifier,'HoldOut',0.08);
k=kfoldLoss(CVMdl,'lossFun','classiferror','mode','average')
L = resubLoss(classifier,'LossFun','classiferror')
Accuracy = 1 - k
댓글 수: 2
ROHAN JAIN
2020년 6월 30일
편집: ROHAN JAIN
2020년 6월 30일
Hi,
You can plot the confusion matrix easily by using the following function:
confusionchart(testlabels,labels_predicted)
where testlabels are the labels of the test set and labels_predicted refers to the labels that have been predicted by the LDA classifier using predict().
It automatically plots the confusion matrix. Further, you can also store it in a variable and access the values using the dot operator as mentioned below.
cvmat=confusionchart(testlabels,labels_predicted)
cval=cmat.NormalizedValues; % cval is the required matrix
Hope it helps!
Thanks
답변 (2개)
Santhana Raj
2017년 5월 11일
I am not aware of any method to plot confusion matrix. But usually I calculate the precision and recall from the true positives and true negatives. Some places I also use F-measure. Depending on your application, any of this might be a good measure to evaluate your classification algorithm.
Check wiki for the formulas for these.
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Classification에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!