필터 지우기
필터 지우기

Is there a way to plot a confusion matrix of the cross validation results?

조회 수: 4 (최근 30일)
Hadeer tawfik
Hadeer tawfik 2016년 10월 30일
편집: ROHAN JAIN 2020년 6월 30일
Can somebody tell me how to plot a confusion matrix of the crossval result?
CVMdl = crossval(classifier,'HoldOut',0.08);
k=kfoldLoss(CVMdl,'lossFun','classiferror','mode','average')
L = resubLoss(classifier,'LossFun','classiferror')
Accuracy = 1 - k
  댓글 수: 2
ben dp
ben dp 2017년 5월 10일
Hey Hadeer!
Did you find a solution? I'm in the same problem.
ROHAN JAIN
ROHAN JAIN 2020년 6월 30일
편집: ROHAN JAIN 2020년 6월 30일
Hi,
You can plot the confusion matrix easily by using the following function:
confusionchart(testlabels,labels_predicted)
where testlabels are the labels of the test set and labels_predicted refers to the labels that have been predicted by the LDA classifier using predict().
It automatically plots the confusion matrix. Further, you can also store it in a variable and access the values using the dot operator as mentioned below.
cvmat=confusionchart(testlabels,labels_predicted)
cval=cmat.NormalizedValues; % cval is the required matrix
Hope it helps!
Thanks

댓글을 달려면 로그인하십시오.

답변 (2개)

Santhana Raj
Santhana Raj 2017년 5월 11일
I am not aware of any method to plot confusion matrix. But usually I calculate the precision and recall from the true positives and true negatives. Some places I also use F-measure. Depending on your application, any of this might be a good measure to evaluate your classification algorithm.
Check wiki for the formulas for these.

Karina Nanuck-Robertson
Karina Nanuck-Robertson 2019년 4월 16일
Not sure if this helps

카테고리

Help CenterFile Exchange에서 Classification에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by