almost-autnomous differential equation

조회 수: 2 (최근 30일)
Bob
Bob 2016년 7월 23일
댓글: Star Strider 2016년 7월 24일
y' = y^2 − t. This differential equation has “stationary” solutions, but unlike with an autonomous equation, those stationary solutions are not horizontal. Vary the initial condition y(0) = c for a bit to try to get a sense of what the solutions look like. (Picking values between −3 and +3 should be good enough.)
Part A: There’s a value P such that, if y(0) < P, then the solution to the initial value problem decreases, while if y(0) > P, the solution to the initial value problem increases. Figure out what P is to two decimal places.
Attempted code:
syms y(t);
for c = -3:1:3
fc = dsolve('Dy = y^2 - t' , y(0) == c);
end
Not sure how I get it to print out an answer for p and get it to be for p to two decimal places.

채택된 답변

Star Strider
Star Strider 2016년 7월 23일
편집: Star Strider 2016년 7월 23일
You need to solve it symbolically, but then you can use the matlabFunction function to create an anonymous function from it:
syms y(t) c
fc(t,c) = dsolve(diff(y) == y^2 - t, y(0) == c);
fc_fcn = matlabFunction(fc)
fc_fcn = @(t,c) -(airy(3,t)+((sqrt(3.0).*gamma(2.0./3.0).^2.*3.0+3.0.^(2.0./3.0).*c.*pi.*2.0).*airy(1,t))./(gamma(2.0./3.0).^2.*3.0-3.0.^(1.0./6.0).*c.*pi.*2.0))./(airy(2,t)+((sqrt(3.0).*gamma(2.0./3.0).^2.*3.0+3.0.^(2.0./3.0).*c.*pi.*2.0).*airy(0,t))./(gamma(2.0./3.0).^2.*3.0-3.0.^(1.0./6.0).*c.*pi.*2.0));
You also need to decide on an appropriate range for ‘t’ if you haven’t already been given one. It might be easier to use a ribbon plot for this until you home in on the correct value for ‘c’.
  댓글 수: 8
Bob
Bob 2016년 7월 24일
Does this provide me with a value of c though.
Star Strider
Star Strider 2016년 7월 24일
Not directly, but since I don’t understand what behaviour the particular value of ‘c’ is supposed to do, it should give you a way of determining the behaviour you’re looking for.
You can also plot the derivative (Jacobian) with meshc or contour if that would help:
t = linspace(0, 5, 50);
c = linspace(-3, 3, 50);
[T,C] = meshgrid(t,c);
fc_fcn = @(t,c) -(airy(3,t)+((sqrt(3.0).*gamma(2.0./3.0).^2.*3.0+3.0.^(2.0./3.0).*c.*pi.*2.0).*airy(1,t))./(gamma(2.0./3.0).^2.*3.0-3.0.^(1.0./6.0).*c.*pi.*2.0))./(airy(2,t)+((sqrt(3.0).*gamma(2.0./3.0).^2.*3.0+3.0.^(2.0./3.0).*c.*pi.*2.0).*airy(0,t))./(gamma(2.0./3.0).^2.*3.0-3.0.^(1.0./6.0).*c.*pi.*2.0));
dfc_fcn = gradient(fc_fcn(T, C));
figure(1)
contour(T, C, dfc_fcn, 50)
grid on
xlabel('t')
ylabel('c')

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Mathematics에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by