How to include in-plane displacements in the PDE solver?

조회 수: 3 (최근 30일)
Henry1993x
Henry1993x 2016년 5월 3일
댓글: Henry1993x 2016년 5월 6일
Hi there,
There is an example available for calculating the deflection w of a uniformly loaded, isotropic plate using the PDE solver (not the pdetool):
The boundary conditions are expressed as:
k = 1e7; % spring stiffness
bOuter = applyBoundaryCondition(pdem,'Edge',(1:4), 'g', [0 0], 'q', [0 0; k 0]);
So I wonder,
  1. How can plane stresses sigma_x and sigma_y be calculated?
  2. How can in-plane displacements (perpendicular to w) be included as boundary conditions in the formulation of the problem?
Also, the solution to the elliptical PDE:
res = solvepde(pdem);
outputs something like:
res =
StationaryResults with properties:
NodalSolution: [100x2 double]
XGradients: [100x2 double]
YGradients: [100x2 double]
ZGradients: [0x2 double]
Mesh: [1x1 FEMesh]
I assume that XGradient and YGradient are the dw/dx and dw/dy respectively. My other question is then, how can the second derivative d2w/dx2 and d2w/dy2 can be estimated?
Thanks!

답변 (1개)

Vaibhav Awale
Vaibhav Awale 2016년 5월 6일
Hi Henry,
I will try to answer the questions that I know.
1) You can refer to this example . PDE app is used in this case to find plane stress and strain. However, you can do it using PDE toolbox command line approach as well.
2) I am not sure what you mean by in plane displacement at boundary.
3) Looking at the way the problem is formulated, res.NodalSolution consists of solution to [u1, u2] where u1 = w u2 = \Delta^2 w = v
and XGradient and YGradient are gradients in x and y direction respectively for u1 and u2.
I hope this answers your queries.
Regards,
Vaibhav
  댓글 수: 1
Henry1993x
Henry1993x 2016년 5월 6일
Thanks a lot Vaibhav, your answer helps me a lot. Best!

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 PDE Solvers에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by