Plot multi-class decision boundaries SVM?

조회 수: 4 (최근 30일)
AR
AR 2016년 4월 26일
Does anyone know how to plot Plot multi-class decision boundaries for SVM?
I'm doing Handwritten Digit classification so have 10-classes w/256-predictors and using "fitcecoc" and "predict" but having problems plotting the mixed-model, decision boundaries.
Any suggestions?
predictorExtractionFcn = @(x) array2table(x, 'VariableNames', predictorNames); svmPredictFcn = @(x) predict(classificationSVM, x); trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));
predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 'column_40', 'column_41', 'column_42', 'column_43', 'column_44', 'column_45', 'column_46', 'column_47', 'column_48', 'column_49', 'column_50', 'column_51', 'column_52', 'column_53', 'column_54', 'column_55', 'column_56', 'column_57', 'column_58', 'column_59', 'column_60', 'column_61', 'column_62', 'column_63', 'column_64', 'column_65', 'column_66', 'column_67', 'column_68', 'column_69', 'column_70', 'column_71', 'column_72', 'column_73', 'column_74', 'column_75', 'column_76', 'column_77', 'column_78', 'column_79', 'column_80', 'column_81', 'column_82', 'column_83', 'column_84', 'column_85', 'column_86', 'column_87', 'column_88', 'column_89', 'column_90', 'column_91', 'column_92', 'column_93', 'column_94', 'column_95', 'column_96', 'column_97', 'column_98', 'column_99', 'column_100', 'column_101', 'column_102', 'column_103', 'column_104', 'column_105', 'column_106', 'column_107', 'column_108', 'column_109', 'column_110', 'column_111', 'column_112', 'column_113', 'column_114', 'column_115', 'column_116', 'column_117', 'column_118', 'column_119', 'column_120', 'column_121', 'column_122', 'column_123', 'column_124', 'column_125', 'column_126', 'column_127', 'column_128', 'column_129', 'column_130', 'column_131', 'column_132', 'column_133', 'column_134', 'column_135', 'column_136', 'column_137', 'column_138', 'column_139', 'column_140', 'column_141', 'column_142', 'column_143', 'column_144', 'column_145', 'column_146', 'column_147', 'column_148', 'column_149', 'column_150', 'column_151', 'column_152', 'column_153', 'column_154', 'column_155', 'column_156', 'column_157', 'column_158', 'column_159', 'column_160', 'column_161', 'column_162', 'column_163', 'column_164', 'column_165', 'column_166', 'column_167', 'column_168', 'column_169', 'column_170', 'column_171', 'column_172', 'column_173', 'column_174', 'column_175', 'column_176', 'column_177', 'column_178', 'column_179', 'column_180', 'column_181', 'column_182', 'column_183', 'column_184', 'column_185', 'column_186', 'column_187', 'column_188', 'column_189', 'column_190', 'column_191', 'column_192', 'column_193', 'column_194', 'column_195', 'column_196', 'column_197', 'column_198', 'column_199', 'column_200', 'column_201', 'column_202', 'column_203', 'column_204', 'column_205', 'column_206', 'column_207', 'column_208', 'column_209', 'column_210', 'column_211', 'column_212', 'column_213', 'column_214', 'column_215', 'column_216', 'column_217', 'column_218', 'column_219', 'column_220', 'column_221', 'column_222', 'column_223', 'column_224', 'column_225', 'column_226', 'column_227', 'column_228', 'column_229', 'column_230', 'column_231', 'column_232', 'column_233', 'column_234', 'column_235', 'column_236', 'column_237', 'column_238', 'column_239', 'column_240', 'column_241', 'column_242', 'column_243', 'column_244', 'column_245', 'column_246', 'column_247', 'column_248', 'column_249', 'column_250', 'column_251', 'column_252', 'column_253', 'column_254', 'column_255', 'column_256'}; predictors = inputTable(:, predictorNames); response = inputTable.column_257;

답변 (0개)

카테고리

Help CenterFile Exchange에서 Statistics and Machine Learning Toolbox에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by