Mapminmax process function causes that NN incorrectly simulates outputs

조회 수: 9 (최근 30일)
Hello,
I have a problem with some outputs from a trained custom neural network. I am using MATLAB 2014 with NN ToolBox ver 8.2.
I have created a simple feedforward NN for classification. I have used some Inputs and Targets, trained the NN, and tried to simulate Outputs given Inputs from the same range. The NN I created gives me incorrect outputs. First it returns outputs only with 0,1 range while the targets are in rage of -6 ... 3 and when I add a process function 'mapminimax' to input and output, the results are wrong: 1. when targets are 0 ... 1, there is an offset of 0.5 such that the outputs are 0.5 and 1 2. when targets are e.g. -6 ... 3, the outputs are around -3 ... 3
I am trying to understand what I am doing wrong.
PS. I have already asked this question in SO and also I provided some more details code: http://stackoverflow.com/questions/36449224/mapminmax-process-function-causes-that-nn-incorrectly-simulates-outputs
The code to test NN
clear all; close all; clc;
net = NNPatRec;
%net.inputs{1}.processFcns = {'mapminmax'};
%net.outputs{2}.processFcns = {'mapminmax'};
Inputs = -10:10;
%Targets = [-6*ones(1,11) 3*ones(1,10)];
Targets = [zeros(1,11) ones(1,10)];
[net,tr] = train(net,Inputs,Targets);
net(-10:10)
The code to create NN:
function net = NNPatternRecognition
net = nntest;
end
function net = nntest
net = network;
net.numInputs = 1;
net.numLayers = 2;
net.biasConnect = [1 1]';
net.inputConnect = [1; 0];
net.layerConnect = [0 0; 1 0];
net.outputConnect = [0 1];
% Inputs
%net.inputs{1}.processFcns = {'mapminmax'};
net.inputWeights{1}.learnFcn = 'learngdm';
% layers 1 (at input)
net.layers{1}.initFcn = 'initnw';
net.layers{1}.netInputFcn = 'netsum';
net.layers{1}.transferFcn = 'tansig';
net.layers{1}.size = 3;
% layers 2 (hidden)
net.layers{2}.initFcn = 'initnw';
net.layers{2}.netInputFcn = 'netsum';
net.layers{2}.transferFcn = 'purelin';
net.layers{2}.size = 1;
% Network functions
net.adaptFcn = 'adaptwb';
net.derivFcn = 'defaultderiv';
net.divideFcn = 'dividerand'; %'divideblock';
net.initFcn = 'initlay';
net.performFcn = 'crossentropy';
net.trainFcn = 'trainscg';
% Outputs
%net.outputs{2}.processFcns = {'mapminmax'};
%net.outputs{2}.exampleOutput = [0 1];
net.trainParam.showWindow = false;
net.trainParam.showCommandLine = true;
end

채택된 답변

Greg Heath
Greg Heath 2016년 4월 8일
close all, clear all, clc, plt=0, tic
x = -10:10; N = length(x)
trueind = 1 + [zeros(1,11) ones(1,10)];
t = full(ind2vec(trueind))
plt = plt+1, figure(plt), hold on
plot( x( 1:11), trueind( 1:11) ,'o' )
plot( x(12:21), trueind(12:21),'ro' )
axis([ -11 11 0 3 ])
title('CLASS INDICES')
rng('default')
net = patternnet;
[ net tr y e ] = train( net, x, t );
outind = vec2ind(y)
plot( x( 1:11), outind( 1:11) ,'x' ,'LineWidth',2)
plot( x(12:21), outind(12:21),'rx' ,'LineWidth',2)
err = outind~=trueind;
Nerr = sum(err) % 1
PctErr = 100*Nerr/N % 4.7619
Hope this helps.
For details, remove the semicolon to get
net = net
ALSO, for a trn/val/tst breakdown use
tr = tr
Hope this helps.
Thank you for formally accepting my answer
Greg
  댓글 수: 3
Greg Heath
Greg Heath 2016년 4월 12일
I don't know where you got that idea. Did you run my program?
Brendan Hamm
Brendan Hamm 2016년 4월 12일
There should be exactly 2 rows in the output. The probability of Class_1 and the probability of Class_2. You just refer to these as Class_0 and Class_1 respectively.

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Brendan Hamm
Brendan Hamm 2016년 4월 6일
You would likely have better luck if you just started with the patternnet which is meant for NN classification.
What I see that is wrong with your current implementation is you have a linear transferFcn for your second layer. For classification purposes this should really be a softmax function. That is change
net.layers{2}.transferFcn = 'purelin';
to
net.layers{2}.transferFcn = 'softmax';
There are also 2 functions used for the processFcns for the the input and output:
net.outputs{2}.processFcns == {'removeconstantrows', mapminmax};
net.inputs{1}.processFcns == {'removeconstantrows', mapminmax};
  댓글 수: 4
Brendan Hamm
Brendan Hamm 2016년 4월 7일
As a shameless plug, if you ever want your Machine Learning Algorithms to feel a little bit less "black-box", consider attending the Machine Learning with MATLAB course.
Céldor
Céldor 2016년 4월 8일
편집: Céldor 2016년 4월 8일
Many thanks for this Brendan. Everything's working :)
Regarding mapminmax, I also found what I needed to set yesterday. I had to go through the process of how the command patternnet creates a a netowrk and realised it uses feedforwardnet. But somewhere in the code, there's a line where the ymin is set to 0. I have set ymin by myself and everything started to work :)
And thanks for the comment on preparation of Targets for classification. This is another thing I had to go through by myself and realised that NN works much better if there are multiple outputs, each representing individual class.
Thanks :)
PS. I have just learned a new command: dummyvar

댓글을 달려면 로그인하십시오.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by