GA-Neural Network Hybridization

조회 수: 1 (최근 30일)
Abul Fujail
Abul Fujail 2012년 2월 1일
댓글: Greg Heath 2017년 1월 30일
How GA can be hybridized with Neural network (with reference to Matlab).
  댓글 수: 3
Abul Fujail
Abul Fujail 2012년 4월 4일
in='input_train.tra';
p=load(in);
p=transpose(p);
net=newff([.1 .9;.1 .9;.1 .9;.1 .9],[7,1], {'logsig','logsig'},'trainlm');
net=init(net);
tr='target_train.tra';
x=load(tr);
x=transpose(x);
net.trainParam.epochs=600;
net.trainParam.show=10;
net.trainParam.lr=0.3;
net.trainParam.mc=0.6;
net.trainParam.goal=0;
[net,tr]=train(net,p,x);
y=sim(net,p);
Some codes are shown above... i have 4 input vector and 1 target vector... i want to get the optimum weight with GA so that the mean square error between target and neural network predicted result is minimum. Please suggest me how the GA can be added with this neural network code..
thomas lass
thomas lass 2016년 12월 24일
I need the full codes of GA can be hybridized with Neural network

댓글을 달려면 로그인하십시오.

채택된 답변

Greg Heath
Greg Heath 2012년 2월 3일
I don't see how they can be combined to an advantage.
Just write the I/O relationship for the net in terms of input, weights and output: y = f(W,x). Then use the Global Optimization toolox to minimize the mean square error MSE = mean(e(:).^2) where e is the training error, e = (t-y) and t is the training goal.
Hope this helps.
Greg
  댓글 수: 3
Shipra Kumar
Shipra Kumar 2017년 1월 30일
편집: Shipra Kumar 2017년 1월 30일
greg how can u write y as a function. i am having similar difficulty while implementing ga-nn. would be glad if u could help
Greg Heath
Greg Heath 2017년 1월 30일
y = B2+ LW*tansig( B1 + IW *x);

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by