Coding help needed to optimize my 3*3 Diagonal matrix with GA.

조회 수: 3 (최근 30일)
guru
guru 2016년 3월 27일
댓글: guru 2016년 9월 14일
Hi. I am working on antenna design and for optimization of reactive elements or we can say to find the best parasitic reactance, I am using GA in Matlab. I looked at various resources but my problem is little different and haven't addressed earlier. I have tried below to explain my algorithm with the use of Matlab code it self.
clc;
clear all;
j = sqrt(-1);
c = 3*10^8;
f = 10^9;
lambda = c/f;
d = lambda/2;
h = lambda/2;
display(c);
display(f);
display(lambda);
display(d);
display(h);
z11 = 78.1+(j*35.5);
z12 = 96.8+(j*66.139);
z13 = 60.0824+(j*42.95);
Z_A = [z11 z12 z13; z12 z11 z12; z13 z12 z11]; % Antenna Impedance
display(Z_A);
Z_L = [j*x_1 0 0; 0 50+j*x_2 0; 0 0 j*x_3]; % Load Impedance
display(Z_L);
Z_T = [Z_A] + Z_L;
V = [0;
1;
0];
I = inv(Z_T)*V;
display(I);
display(fval);
In this code I am trying to find the minimum I by optimizing x1,x2 and x3. What I am trying is somehow I can generate x1, x2, x3 and then run GA over and over again on the same program until I get minimum I with my fitness function being
y = -((abs(I(1)-I(2))^2) + (abs(I(3)-I(2))^2));
If anyone has done something related to it or willing to help. your help would be much appreciated and If I write a paper I will surely acknowledge them.
  댓글 수: 7
Walter Roberson
Walter Roberson 2016년 9월 14일
Instead of (for example)
x(1).^2 - 3 * x(2)
where x(1) is complex, you would break it up into two variables
(x(1)+1i*x(3)).^2 - 3 * x(2)
Depending on the expression, you might be able to simplify the calculation after you do that; for example if there is a imag(x(1)) sub-expression in the original, you could replace that with x(3) directly instead of with imag(x(1)+1i*x(3))
guru
guru 2016년 9월 14일
So what could be the right code here? if my values are imaginary.
function best_imp = determine_impedence
c = 3*10^8;
f = 10^9;
lambda = c/f;
d = lambda/2;
h = lambda/2;
z11 = 78.1+(1j*35.5);
z12 = 96.8+(1j*66.139);
z13 = 60.0824+(1j*42.95);
Z_A = [z11 z12 z13; z12 z11 z12; z13 z12 z11]; % Antenna Impedance
nvar = 3;
A = [];
b = [];
Aeq = [];
beq = [];
lb = -300 * ones(nvar, 1);
ub = -50 * ones(nvar, 1);
best_imp = ga(@(x) obj(x, Z_A), nvar, A, b, Aeq, beq, lb, ub);
function y = obj(x, Z_A)
Z_L = [1j*x(1), 0, 0; 0, 50+1j*x(2), 0; 0, 0, 1j*x(3)]; % Load Impedance
Z_T = Z_A + Z_L;
V = [0; 1; 0];
I = Z_T \ V;
y = -((abs(I(1)-I(2))^2) + (abs(I(3)-I(2))^2));
end

댓글을 달려면 로그인하십시오.

채택된 답변

Walter Roberson
Walter Roberson 2016년 3월 29일
function best_imp = determine_impedence
c = 3*10^8;
f = 10^9;
lambda = c/f;
d = lambda/2;
h = lambda/2;
z11 = 78.1+(1j*35.5);
z12 = 96.8+(1j*66.139);
z13 = 60.0824+(1j*42.95);
Z_A = [z11 z12 z13; z12 z11 z12; z13 z12 z11]; % Antenna Impedance
nvar = 3;
A = [];
b = [];
Aeq = [];
beq = [];
lb = -300 * ones(nvar, 1);
ub = -50 * ones(nvar, 1);
best_imp = ga(@(x) obj(x, Z_A), nvar, A, b, Aeq, beq, lb, ub);
function y = obj(x, Z_A)
Z_L = [1j*x(1), 0, 0; 0, 50+1j*x(2), 0; 0, 0, 1j*x(3)]; % Load Impedance
Z_T = Z_A + Z_L;
V = [0; 1; 0];
I = Z_T \ V;
y = -((abs(I(1)-I(2))^2) + (abs(I(3)-I(2))^2));
  댓글 수: 8
Walter Roberson
Walter Roberson 2016년 3월 30일
The false premise implies all premises. When you use code to do something it is not intended to do, then it may return any result, including working the way you "want" until the time your Senior Vice President is watching you demonstrate it, at which time it could instead decide to say out loud "The boss is a fat-head!" and send an email message to your mother that says "Please wash the elephant with ice cubes and haggis!"
Walter Roberson
Walter Roberson 2016년 3월 30일
편집: Walter Roberson 2016년 3월 30일
My tests appear to indicate that the zeros of obj occur when x1 = x3, with x2 irrelevant. I am having difficulty interpreting some of my findings, but it appears there might be a small set of values that x1 and x3 must be chosen from, and that y becomes 0 in those cases, no matter what the value of x2.
The formula for y is
- 10000 * ((156250000000000 * x1^2 * x3^2 + 11093750000000000 * x1^2 * x3 + 31762187500000000 * x1 * x3^2 + 1149978125000000000 * x1^2 + 3736521112425000000 * x1 * x3 + 6393827550156250000 * x3^2 - 38063162015837500000 * x1 - 121983908458654175000 * x3 + 4521408223111359099409)^2 / (1562500000000000000 * x1^2 * x2^2 * x3^2 + 110937500000000000000 * x1^2 * x2^2 * x3 + 110937500000000000000 * x1^2 * x2 * x3^2 + 110937500000000000000 * x1 * x2^2 * x3^2 + 11499781250000000000000 * x1^2 * x2^2 + 23488664621875000000000 * x1^2 * x2 * x3 + 27609156250000000000000 * x1^2 * x3^2 + 13392788405500000000000 * x1 * x2^2 * x3 + 23488664621875000000000 * x1 * x2 * x3^2 + 11499781250000000000000 * x2^2 * x3^2 - 1754386725423437500000000 * x1^2 * x2 - 2611325850423437500000000 * x1^2 * x3 - 247315150029750000000000 * x1 * x2^2 - 2981558817028312500000000 * x1 * x2 * x3 - 2611325850423437500000000 * x1 * x3^2 - 247315150029750000000000 * x2^2 * x3 - 1754386725423437500000000 * x2 * x3^2 + 68952991611446745376562500 * x1^2 + 52512019412360693584500000 * x1 * x2 + 159527293499906478503125000 * x1 * x3 + 14996843569186297188840000 * x2^2 + 52512019412360693584500000 * x2 * x3 + 68952991611446745376562500 * x3^2 - 2518083174982482155091812500 * x1 - 2207798895986669961611370000 * x2 - 2518083174982482155091812500 * x3 + 81824373462710400660974340041)^2)^(1 / 2) - 10000 * ((156250000000000 * x1^2 * x3^2 + 31762187500000000 * x1^2 * x3 + 11093750000000000 * x1 * x3^2 + 6393827550156250000 * x1^2 + 3736521112425000000 * x1 * x3 + 1149978125000000000 * x3^2 - 121983908458654175000 * x1 - 38063162015837500000 * x3 + 4521408223111359099409)^2 / (1562500000000000000 * x1^2 * x2^2 * x3^2 + 110937500000000000000 * x1^2 * x2^2 * x3 + 110937500000000000000 * x1^2 * x2 * x3^2 + 110937500000000000000 * x1 * x2^2 * x3^2 + 11499781250000000000000 * x1^2 * x2^2 + 23488664621875000000000 * x1^2 * x2 * x3 + 27609156250000000000000 * x1^2 * x3^2 + 13392788405500000000000 * x1 * x2^2 * x3 + 23488664621875000000000 * x1 * x2 * x3^2 + 11499781250000000000000 * x2^2 * x3^2 - 1754386725423437500000000 * x1^2 * x2 - 2611325850423437500000000 * x1^2 * x3 - 247315150029750000000000 * x1 * x2^2 - 2981558817028312500000000 * x1 * x2 * x3 - 2611325850423437500000000 * x1 * x3^2 - 247315150029750000000000 * x2^2 * x3 - 1754386725423437500000000 * x2 * x3^2 + 68952991611446745376562500 * x1^2 + 52512019412360693584500000 * x1 * x2 + 159527293499906478503125000 * x1 * x3 + 14996843569186297188840000 * x2^2 + 52512019412360693584500000 * x2 * x3 + 68952991611446745376562500 * x3^2 - 2518083174982482155091812500 * x1 - 2207798895986669961611370000 * x2 - 2518083174982482155091812500 * x3 + 81824373462710400660974340041)^2)^(1 / 2)

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Design, Analysis, Benchmarking, and Verification에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by