neural nets: validation vs testing?

조회 수: 7 (최근 30일)
59morgan
59morgan 2016년 3월 24일
답변: Greg Heath 2016년 3월 25일
wondering what the real difference is between validation and testing? both are tests of the net, it would seem
thanks

채택된 답변

Greg Heath
Greg Heath 2016년 3월 25일
NOTE THE DIFFERENCE BETWEEN DESIGN AND TRAINING
1. Data Division
DATA = TRAINING + VALIDATION + TESTING + UNSEEN
2. Design
DATA = DESIGN + NONDESIGN
DESIGN = TRAINING + VALIDATION
NONDESIGN = TESTING + UNSEEN
3. Training
DATA = TRAINING + NONTRAINING
NONTRAINING = VALIDATION + TESTING + UNSEEN
4. Training data is used to directly modify weight and bias values. Performance estimates obtained from training data are HIGHLY BIASED because the same data is directly used for both modifications and evaluation.
5. Validation data is used for
a. ValStopping: Stops training when nontraining
validation error increases for m consecutive
epochs. This enhances the network's ability to
generalize to nondesign ( i.e., testing and
unseen) data. The MATLAB default is m = 6.
b. Model ranking: Ranks multiple designs w.r.t.
performance. Performance estimates are SLIGHTLY
BIASED because validation data indirectly
affects design.
6. Testing data is used to obtain UNBIASED ESTIMATES OF NONTRAINING (including UNSEEN) DATA.
Hope this helps.
Thank you for formally accepting my answer
Greg

추가 답변 (1개)

Walter Roberson
Walter Roberson 2016년 3월 25일
The test set may be used as feedback to refine the neural network. The validation set may not be.
  댓글 수: 1
Greg Heath
Greg Heath 2016년 3월 25일
No. For NNs, it is just the opposite.
Greg

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by