How can i use pca as a filter

조회 수: 4 (최근 30일)
Smita chopade
Smita chopade 2016년 3월 8일
댓글: Tom Lane 2016년 3월 11일
I am using PCA as filter. But as data should be obtained with maximum principle component having 90% contribution. But in my code i am not getting contribution above 90%. As i am increasing my no of observation contribution is decresing. I have used matlab function: pca(x). Please guide me what should i do to retain contribution level above 90%.

채택된 답변

Image Analyst
Image Analyst 2016년 3월 8일
Use more principal components. If you're just using the first (strongest) principal component, then yeah, it's quite possible it doesn't explain more than 90% of the variation/pattern/shape of the input observations. If you use all of them then it will explain 100%. So use as many of them as you need to reach 90%.
  댓글 수: 2
Smita chopade
Smita chopade 2016년 3월 9일
As i am increasing my no of aobservation variation is decreasing. For testing purpose i simply take values of some variables with 4 observation i.e. my matrix becomes 6x4. In this i found that if i keep numbers varying too much from the number in last observation then contribution increase but if i keep same or nearer value to the last observation then contribution decreases. As i am working for the data which is not varying too much i am getting lesser contribution. In th9s case suggest me what should I do?
Tom Lane
Tom Lane 2016년 3월 11일
It's not clear to me what you want. You should know that PCA thinks of the rows as observations, so a 6x4 matrix has 6 observations. The third output from PCA is the variances of the 4 components. The total of them is the total variance. By keeping all 4 you explain 100%.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by