eig function missing eigenvector

조회 수: 3 (최근 30일)
David Mandel
David Mandel 2016년 1월 27일
답변: Roger Stafford 2016년 1월 28일
Consider the matrix
A = [0.5 0.5 0.0 0.0;
0.5 0.5 0.0 0.0;
0.0 0.0 0.5 0.5;
0.0 0.0 0.5 0.5];
This matrix clearly has an eigenvector of (1,1,1,1) with eigenvalue 1.
However, using the command
[V,D] = eig(A)
gives
V =
-0.7071 0 0 0.7071
0.7071 0 0 0.7071
0 -0.7071 0.7071 0
0 0.7071 0.7071 0
D =
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
In particular, neither of the eigenvectors associated with the two eigenvalues of 1 are the (1,1,1,1) vector. Instead, it seems the eig function orthogonalized the set of eigenvectors. How can I recover the (1,1,1,1) eigenvector?

답변 (2개)

Roger Stafford
Roger Stafford 2016년 1월 28일
When you have more than one eigenvector with the same eigenvalue, any linear combination of them will also be an eigenvector with that same eigenvalue, of which there would be infinitely many, even if normalized. In your case the sum of those two rightmost eigenvectors times 1/sqrt(2) would give you the vector [1;1;1;1] which would also be an eigenvector. It cannot give you the infinitude of all possible eigenvectors with that eigenvalue. The function 'eig' simply chose a different pair of orthogonal eigenvectors than the particular one(s) you had in mind.

Walter Roberson
Walter Roberson 2016년 1월 27일
eigenvectors are not unique, but they are certain to be orthogonal to each other for real symmetric matrices.

카테고리

Help CenterFile Exchange에서 Linear Algebra에 대해 자세히 알아보기

태그

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by