clustering, matlab, nominal data
조회 수: 5 (최근 30일)
이전 댓글 표시
Hello All. I need an advice. I need recommend method of clustering which is suitable for nominal data in Matlab. Could you help me, please? I appreciate every idea. Thank you in advance.
댓글 수: 0
채택된 답변
Walter Roberson
2016년 1월 15일
Nominal / Categorical data usually does not have distance measures between the categories.
댓글 수: 0
추가 답변 (2개)
Image Analyst
2016년 1월 15일
Try the Classification Learner app on the Apps tab.
댓글 수: 1
Tom Lane
2016년 1월 16일
This could work as a post-processing step to assign new data to classes found from the original data. But classificationLearner would require that you know the clusters (groups) for the original data.
Tom Lane
2016년 1월 16일
For hierarchical clustering, consider using Hamming distance. Here's an example that isn't realistic but that illustrates what to do:
x=randi(3,100,4); % noisy coordinates
x(1:50,5:6) = randi(2,50,2); % try to make 1st 50 points closer
x(51:100,5:6) = 2+randi(2,50,2); % next 50 points different
z = linkage(x,'ave','hamming'); % try average linkage clustering
dendrogram(z,100) % show dendrogram with all points
댓글 수: 2
Tom Lane
2016년 1월 30일
You are right that the clustering functions operate on matrices so you would need to convert your data to numbers. The grp2idx function could be helpful. And yes, the Classification Learner app is aimed at classifying data into known groups. Here is a simple example where you can see the Hamming distance between data represented by a three-category variable and a two-category variable.
>> x = [1 1;2 1;3 1;1 2;2 2;2 3];
>> squareform(pdist(x,'hamming'))
ans =
0 0.5000 0.5000 0.5000 1.0000 1.0000
0.5000 0 0.5000 1.0000 0.5000 0.5000
0.5000 0.5000 0 1.0000 1.0000 1.0000
0.5000 1.0000 1.0000 0 0.5000 1.0000
1.0000 0.5000 1.0000 0.5000 0 0.5000
1.0000 0.5000 1.0000 1.0000 0.5000 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Classification Learner App에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!