Help with nonlinear robost fitting on nlinfit function. fminsearch works fine but not nlinfit.
조회 수: 1 (최근 30일)
이전 댓글 표시
Hi
Im trying to fit some data i have to a function. I have used fminsearch and it has worked fine. Except I wanna introduce robost fitting as there are some point that make the whole fitting wrong.
I searched and found that the stat tool already has a function nlinfit that does everything for you so i thought i would use it.
However when i try to use the function in the program it says that i get NaN or Infinity which i dont get with fminsearch and with a separate m-file the data doesnt go into the other function and it says that the values are unknown.
[ndata] = given below
X = ndata(:,2:8)
dT = ndata(:,1);
par0=[2 0.2 1.5 -0.5 -0.5 -0.5]';
this doesn't send X into funtest.
par = nlinfit(X,dT,funtest,par0);
this one return NaN
%funnfit = @(par,ndata)(par(1).*ndata(:,1).^(0.5*par(2)).*ndata(:,2).^(0.5*par(3)).*ndata(:,3).^par(4).*ndata(:,4).^par(5).*ndata(:,5).^par(6));
%par = nlinfit(ndata(:,2:8),ndata(:,1),funnfit,par0);
funtest
function sse=funtest(params,A)
Pcu = A(:,1); Ptot = A(:,2); n = A(:,3); T = A(:,4); nn = A(:,5); Tr = A(:,6); L= A(:,7);
k = params(1); x = params(2); y = params(3); z = params(4); a = params(5); b = params(6);
sse=k.*Pcu.^(0.5*x).*Ptot.^(0.5*y).*n.^z.*Tr.^a.*L.^b;
ndata
1.0e+003 *
0.1085 1.3946 1.8685 0.7500 0.1000 2.6000 0.1800 0.2600
0.1007 1.3643 2.0014 1.0000 0.1000 2.6000 0.1800 0.2600
0.0943 1.3446 2.3106 1.5000 0.1000 2.6000 0.1800 0.2600
0.0877 1.3276 2.9261 2.4700 0.1000 2.6000 0.1800 0.2600
0.1080 1.8367 3.6807 3.0000 0.1000 2.6000 0.1800 0.2600
0.0680 0.7929 1.1946 0.7500 0.0750 2.6000 0.1350 0.2600
0.0657 0.7889 1.3187 1.0000 0.0750 2.6000 0.1350 0.2600
0.0624 0.7848 1.6006 1.5000 0.0750 2.6000 0.1350 0.2600
0.0607 0.7925 2.1888 2.4700 0.0750 2.6000 0.1350 0.2600
any help?
댓글 수: 0
답변 (2개)
bym
2012년 1월 15일
you need to tell nlinfit that funtest is a function by adding a @ in front of it. e.g.
ndata = 1.0e+003 * ...
[0.1085 1.3946 1.8685 0.7500 0.1000 2.6000 0.1800 0.2600;
0.1007 1.3643 2.0014 1.0000 0.1000 2.6000 0.1800 0.2600;
0.0943 1.3446 2.3106 1.5000 0.1000 2.6000 0.1800 0.2600;
0.0877 1.3276 2.9261 2.4700 0.1000 2.6000 0.1800 0.2600;
0.1080 1.8367 3.6807 3.0000 0.1000 2.6000 0.1800 0.2600;
0.0680 0.7929 1.1946 0.7500 0.0750 2.6000 0.1350 0.2600;
0.0657 0.7889 1.3187 1.0000 0.0750 2.6000 0.1350 0.2600;
0.0624 0.7848 1.6006 1.5000 0.0750 2.6000 0.1350 0.2600;
0.0607 0.7925 2.1888 2.4700 0.0750 2.6000 0.1350 0.2600];
X = ndata(:,2:8);
dT = ndata(:,1);
par0=[2 0.2 1.5 -0.5 -0.5 -0.5]';
par = nlinfit(X,dT,@funtest,par0);
par =
5.5529
1.0964
0.7167
-0.2858
-0.0487
-0.2793
댓글 수: 1
bym
2012년 1월 15일
generated this warning
Warning: The Jacobian at the solution is ill-conditioned, and some
model parameters may not be estimated well (they are not identifiable).
Use caution in making predictions.
> In nlinfit at 223
참고 항목
카테고리
Help Center 및 File Exchange에서 FPGA, ASIC, and SoC Development에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!