The non-seasonal moving average polynomial is non-invertible

조회 수: 12 (최근 30일)
Roberto TF
Roberto TF 2015년 12월 24일
댓글: Seemant Tiwari 2024년 1월 29일
Hi everyone,
I am trying to simulate and estimate an arma(3,3) process:
model = arima('Constant',0.5,'AR',{0.5;0.3;0.01},'MA',{0.3;0.2;0.1},'Variance',1);
rng('shuffle')
Y = simulate(model,1000);
mod=arima(3,0,3);
[EstMdl] = estimate(mod,Y);
I've created a loop to do this 1000 times. After some iterations (I've already got 300 results before the error message), the following error message appears:
Error using arima/validateModel (line 1290)
The non-seasonal autoregressive polynomial is unstable.
Error in arima/setLagOp (line 401)
OBJ = validateModel(OBJ);
Error in arima/estimate (line 1086)
OBJ = setLagOp(OBJ, 'AR' , LagOp([1 -coefficients(iAR)' ], 'Lags', [0 LagsAR ])
Why does this happen? And why this happen only after some iterations? What can I do to avoid the error?
Best regards
Roberto
  댓글 수: 1
Seemant Tiwari
Seemant Tiwari 2024년 1월 29일
hi,
can you tell me, how are you calculating these values?
'constant', o.5, 'ar',{ 0.5,0.3,0.1}, 'ma', {0.3,,0.2,0.1} ??
i have 1 year hourlywind speed data 365x24 = 8760
i have calculate p, d, q value my p value is 1, q value is 0 and d value is 1.
now i want to create model but i am not understanding how can i calculate 'AR' MA' values.
Thank you

댓글을 달려면 로그인하십시오.

답변 (1개)

Hang Qian
Hang Qian 2015년 12월 28일
Hi Roberto,
The error message “the non-seasonal autoregressive polynomial is unstable” indicates that some of the eigenvalues of the AR part of the series are outside the unit circle, hence non-stationarity. Similarly, the error “the non-seasonal moving average polynomial is non-invertible” shows explosion of the MA roots, hence non-invertibility.
Practically it is not a good idea to fit a high-order ARMA model. It might require a huge sample size to provide a good estimate on a ARMA(3,3) model, even if the data are simulated from the true model. To avoid those error messages, be parsimonious in model specification, say ARMA(1,1). If you really want a high-order model, you may consider informative priors to shrink the coefficients.
Thank you.
Regards,
Hang Qian
  댓글 수: 1
Seemant Tiwari
Seemant Tiwari 2024년 1월 29일
hello,
i have hourly wind speed data, no. of data is 8760
i have calculate p, d, q value
p = 1
d = 0
q = 1
now i want to create arima model.
can you tell me, how can i calculate these value
MD =ARIMA(CONSTANT (? ), 'AR (?), 'SAR' (?), 'SMA' (?), 'VARIANCE' (?))
Thank you

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Conditional Mean Models에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by