I am getting better accuracy with Euclidean distance for Zernike features than SVM or ANFIS. Is it possible?

조회 수: 2 (최근 30일)
I have extracted Zernike Moment features from ORL face database and classified using SVM (libsvm tool), ANFIS of MATLAB, Euclidean distance and Backpropagation Algorithm. I am getting 93.5%, 90.5%, 96% and 90% accuracy respectively for each classifier. Highest accuracy has been obtained using simplest Euclidean distance measure. Is it really possible or I may be doing something wrong? Because as I see literature than SVM is definitely a better classifier. But in my case this is not happening. Please any suggestions/help?

답변 (1개)

Walter Roberson
Walter Roberson 2015년 12월 13일
Zernike Moment features are rotational invariant (at least if you take their magnitude). Euclidean distance is rotational invariant. SVM involves finding a hyperplane in some space to discriminate between features, so SVM is directional in that hyperplane; whether it is rotational invariant in the original space depends on the mapping between the original space and the space the hyperplane is in... but chances are that it is not rotational invariant.
  댓글 수: 1
Geetika
Geetika 2015년 12월 13일
Thank you very much for your answer. So we can say that ZM features might give better results with Euclidean distance over SVM. Can you give some comments on such behavior with ANFIS?

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Zernike Polynomials에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by