Bad result / high deviation using procrustes

조회 수: 3 (최근 30일)
Fritz
Fritz 2015년 12월 4일
편집: Fritz 2015년 12월 11일
I try using procrustes to get the transformation between two point sets, each with 4 points. Manually I found a transformation, that aligns the two point set quite good (TFM_Ref). But the transformation calculated by procrustes (TFM_PcR) is quite bad compared to TFM_Ref.
clearvars
%%Data
S =[-52.0000 0 0;
11.5000 25.0000 0;
53.0000 0 0;
-20.0000 -42.0000 0];
T =[ 0 0 2.71;
42.4000 -23.2300 0;
104.5800 4.4400 0;
70.9000 45.1900 0];
%%Test transformation (determined manually)
TFM_Ref = [-0.9991 -0.0427 0 53.0000;
0.0427 -0.9991 0 0 ;
0 0 1.0000 0 ;
0 0 0 1.0000];
S2T_Ref = unique(transformPointsInverse(affine3d(TFM_Ref'), S),'rows');
T_Ref = unique(T,'rows');
RMSE_Ref = rms(rms(T_Ref-S2T_Ref))
%%Procrustes
[~,~,transform] = procrustes(T, S, 'scaling',0, 'reflection',0);
TFM_PrC = inv([[transform.T', transform.c(1,:)']; 0 0 0 1]);
S2T_PrC = unique(transformPointsInverse(affine3d(TFM_PrC'), S), 'rows');
RMSE_PrC = rms(rms(T_Ref-S2T_PrC))

채택된 답변

Fritz
Fritz 2015년 12월 11일
편집: Fritz 2015년 12월 11일
I found a solution using procrustes with all permutations of the source points. The best transformation is the one with the minimum dissimilarity measure.
clearvars
%%Data
Source =[-52.00 0 0;
11.50 25.00 0;
53.00 0 0;
-20.00 -42.00 0];
Target =[ 0 0 2.71;
42.40 -23.23 0 ;
104.58 4.44 0 ;
70.90 45.19 0 ];
%%Procrustes
IndexPermutations = perms(1:size(Source,1)); % All permutations of the indices of Source
for i=1:length(IndexPermutations)
[D(i,1), ~, TFMs(i)] = procrustes(Target, Source(IndexPermutations(i,:),:), ...
'scaling',0, 'reflection',0); % Try procrustes with all permutations
end
[DMin, I_DMin] = min(D); % Get the index of the smallest dissimilarity measure
TFM = [[TFMs(I_DMin).T', TFMs(I_DMin).c(1,:)']; 0 0 0 1]; % Create the transformation
Source = Source(IndexPermutations(I_DMin,:),:);
Source_tfmd = transformPointsForward(affine3d(TFM'), Source);
rms(rms(Target-Source_tfmd))

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by