HI EVERY ONE how can i develop a general equation for the training neural net work results as shown below and how can i make these equations linear or non linear
조회 수: 2 (최근 30일)
이전 댓글 표시
% ===== NEURAL NETWORK CONSTANTS =====
% Input 1
x1_step1_xoffset = [0.335;0.335;0.501;0.102];
x1_step1_gain = [3.01659125188537;3.01659125188537;4.01606425702811;2.23214285714286];
x1_step1_ymin = -1;
% Layer 1
b1 = [0.70223325258608282;0.24104166905986787;0.15348156236755661;0.71745208472067135;1.0923437909596025;-0.95136708708664663;-0.2046868130938489;0.69549692559132981;0.70255125958906395;0.53378139024323834];
IW1_1 = [0.31553367340711991 -0.40137059105569073 -0.22075607834007485 0.5348647692271854;-0.092030091983253126 -0.28374584174349826 0.20649380927946556 0.35735939709861786;0.32776169040220832 0.050294626086545419 0.079667428618699215 0.50081651896574708;-0.14811804808977719 0.38151873789393176 0.017981906558287995 0.66424811151304852;-0.37652540039941323 0.97877832998161851 -0.077044057346401851 -0.51900261587883245;-0.32720151455381563 0.42742966055003245 -0.35517724643687826 0.50098153225098097;-0.051448362732210991 0.0082648279513306416 -0.86709811026715733 -0.39857638994588535;0.46109450080528508 -0.066531109937333383 -0.041113866300515452 -0.56353092984647901;0.80083018038171372 -0.88583750768332392 -0.063517585064946633 0.81425789700412732;0.079986908269888413 -0.22913002954215689 -0.31306995793356845 -0.38078052790236266];
% Layer 2
b2 = [0.091922137693532732;-0.019433047791502147;0.69939781374412402];
LW2_1 = [0.55261567997791849 0.1160223164052863 -0.047616424378837022 0.42605645022894073 -0.10415185746376703 0.06618768395919053 0.0010938058921189939 -0.6341905607646755 -0.012011661547148993 -0.69437567292807567;0.17306699275597687 0.89820835369168806 0.58079560414251308 0.18560768732162328 0.31513562885346247 0.67277236054086276 0.36880119902800917 0.18586934718597467 -0.083078511715570055 -0.86733076931692943;-0.95085049127019827 0.06753786869036002 -0.42801674583698929 0.94677747671052259 -0.91050254600951541 0.049169317644063827 0.30599676599180614 -0.53164266498283019 0.78422577249919112 -0.54830037775898877];
% Output 1
y1_step1_ymin = -1;
y1_step1_gain = [2.17155266015201;2.1978021978022;4.96277915632754];
y1_step1_xoffset = [0.075;0.075;0.034];
% ===== SIMULATION ========
% Dimensions
Q = size(x1,2); % samples
% Input 1
xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);
% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);
% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;
% Output 1
y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
end
% ===== MODULE FUNCTIONS ========
% Map Minimum and Maximum Input Processing Function function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) y = bsxfun(@minus,x,settings_xoffset); y = bsxfun(@times,y,settings_gain); y = bsxfun(@plus,y,settings_ymin); end
% Sigmoid Symmetric Transfer Function function a = tansig_apply(n) a = 2 ./ (1 + exp(-2*n)) - 1; end
% Map Minimum and Maximum Output Reverse-Processing Function function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) x = bsxfun(@minus,y,settings_ymin); x = bsxfun(@rdivide,x,settings_gain); x = bsxfun(@plus,x,settings_xoffset); end
댓글 수: 1
Candy Swift
2015년 8월 20일
Good question asked. I also have similar problem with you. Let's wait for others to help.
Candy Swift
채택된 답변
Greg Heath
2015년 8월 28일
I have posted this answer several times in other posts. Try searching ANSWERS and the NEWSGROUP using
neural analytic greg
Hope this helps.
Thank you for formally accepting my answer
Greg
댓글 수: 0
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!