HI EVERY ONE how can i develop a general equation for the training neural net work results as shown below and how can i make these equations linear or non linear

조회 수: 2 (최근 30일)
% ===== NEURAL NETWORK CONSTANTS =====
% Input 1
x1_step1_xoffset = [0.335;0.335;0.501;0.102];
x1_step1_gain = [3.01659125188537;3.01659125188537;4.01606425702811;2.23214285714286];
x1_step1_ymin = -1;
% Layer 1
b1 = [0.70223325258608282;0.24104166905986787;0.15348156236755661;0.71745208472067135;1.0923437909596025;-0.95136708708664663;-0.2046868130938489;0.69549692559132981;0.70255125958906395;0.53378139024323834];
IW1_1 = [0.31553367340711991 -0.40137059105569073 -0.22075607834007485 0.5348647692271854;-0.092030091983253126 -0.28374584174349826 0.20649380927946556 0.35735939709861786;0.32776169040220832 0.050294626086545419 0.079667428618699215 0.50081651896574708;-0.14811804808977719 0.38151873789393176 0.017981906558287995 0.66424811151304852;-0.37652540039941323 0.97877832998161851 -0.077044057346401851 -0.51900261587883245;-0.32720151455381563 0.42742966055003245 -0.35517724643687826 0.50098153225098097;-0.051448362732210991 0.0082648279513306416 -0.86709811026715733 -0.39857638994588535;0.46109450080528508 -0.066531109937333383 -0.041113866300515452 -0.56353092984647901;0.80083018038171372 -0.88583750768332392 -0.063517585064946633 0.81425789700412732;0.079986908269888413 -0.22913002954215689 -0.31306995793356845 -0.38078052790236266];
% Layer 2
b2 = [0.091922137693532732;-0.019433047791502147;0.69939781374412402];
LW2_1 = [0.55261567997791849 0.1160223164052863 -0.047616424378837022 0.42605645022894073 -0.10415185746376703 0.06618768395919053 0.0010938058921189939 -0.6341905607646755 -0.012011661547148993 -0.69437567292807567;0.17306699275597687 0.89820835369168806 0.58079560414251308 0.18560768732162328 0.31513562885346247 0.67277236054086276 0.36880119902800917 0.18586934718597467 -0.083078511715570055 -0.86733076931692943;-0.95085049127019827 0.06753786869036002 -0.42801674583698929 0.94677747671052259 -0.91050254600951541 0.049169317644063827 0.30599676599180614 -0.53164266498283019 0.78422577249919112 -0.54830037775898877];
% Output 1
y1_step1_ymin = -1;
y1_step1_gain = [2.17155266015201;2.1978021978022;4.96277915632754];
y1_step1_xoffset = [0.075;0.075;0.034];
% ===== SIMULATION ========
% Dimensions
Q = size(x1,2); % samples
% Input 1
xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);
% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);
% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;
% Output 1
y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
end
% ===== MODULE FUNCTIONS ========
% Map Minimum and Maximum Input Processing Function function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) y = bsxfun(@minus,x,settings_xoffset); y = bsxfun(@times,y,settings_gain); y = bsxfun(@plus,y,settings_ymin); end
% Sigmoid Symmetric Transfer Function function a = tansig_apply(n) a = 2 ./ (1 + exp(-2*n)) - 1; end
% Map Minimum and Maximum Output Reverse-Processing Function function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) x = bsxfun(@minus,y,settings_ymin); x = bsxfun(@rdivide,x,settings_gain); x = bsxfun(@plus,x,settings_xoffset); end

채택된 답변

Greg Heath
Greg Heath 2015년 8월 28일
I have posted this answer several times in other posts. Try searching ANSWERS and the NEWSGROUP using
neural analytic greg
Hope this helps.
Thank you for formally accepting my answer
Greg

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by