Interpreting outputs of pca function

조회 수: 2 (최근 30일)
Henry Hallock
Henry Hallock 2015년 8월 4일
답변: Sagar 2015년 8월 9일
Hi all,
I am having some trouble with interpreting the outputs of the function "pca" in matlab. If I have a 10x15 matrix, with each row of the matrix corresponding to an observation, and each column corresponding to a variable, and I use that matrix as an input into the "pca" function, I see that the first two principal components explain ~90% of the variance in the data set by looking at the output variable "explained". My question is: Which variables in the original input matrix do these two principle components correspond to? Is there any way of knowing? In other words, which column of variables explains the majority of the variance in the data set? Thank you.

답변 (1개)

Sagar
Sagar 2015년 8월 9일
In short, you cannot attribute one principal component to a particular variable, because by definition, a principal component is a linear combination of all the variables with different weights. But you can determine which variable contributes the most in a principal component by calculating correlation between each variables and the principal component of interest.

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by