Why the results of my Elman network are different every time?
조회 수: 2 (최근 30일)
이전 댓글 표시
I created a elman network. But the results every time I run the code were different.I got different "errors","regression" and "avg_error" Could anyone tell me why? Appreciate SO MUCH!
Here is the code.
clear all
load('input4_train.mat');
load('output4_train.mat');
load('input4_test.mat');
load('output4_test.mat');
inputSeries = tonndata(input4_train,false,false);
targetSeries = tonndata(output4_train,false,false);
inputTest = tonndata(input4_test,false,false);
outputTest = tonndata(output4_test,false,false);
% Create a Network
hiddenLayerSize = 5;
net=newelm(inputSeries,targetSeries,[10,3,1], {'tansig','logsig','purelin'});
% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.trainParam.epochs = 2000;
% Initial net
net = init(net);
% Train the Network
net = adapt(net,inputSeries,targetSeries);
% Test the Network
outputs = sim(net,inputTest);
errors = gsubtract(outputTest,outputs);
error = cell2mat(errors);
for i = 1:10
error(i)=abs(error(i));
end
avg_error = sum(error)/10;
performance = perform(net,outputTest,outputs)
% View the Network
view(net)
% Plots
figure, plotregression(outputTest,outputs)
figure, plotresponse(outputTest,outputs)
figure, ploterrcorr(errors)
댓글 수: 3
Greg Heath
2015년 8월 1일
편집: Walter Roberson
2015년 8월 2일
% load('input4_train.mat');
% load('output4_train.mat');
% load('input4_test.mat');
% load('output4_test.mat');
%
% inputSeries = tonndata(input4_train,false,false);
% targetSeries = tonndata(output4_train,false,false);
% inputTest = tonndata(input4_test,false,false);
% outputTest = tonndata(output4_test,false,false);
whos
% % Create a Network
% hiddenLayerSize = 5;
Value never used
% net=newelm(inputSeries,targetSeries,[10,3,1], {'tansig','logsig','purelin'});
No justification for 3 hidden layers. One is sufficient.
% % Setup Division of Data for Training, Validation, Testing
% net.divideParam.trainRatio = 70/100;
% net.divideParam.valRatio = 15/100;
% net.divideParam.testRatio = 15/100;
Above 3 commands unnecessary for default values.
% net.trainParam.epochs = 2000;
%
% % Initial net
% net = init(net);
%
% % Train the Network
% net = adapt(net,inputSeries,targetSeries);
%
% % Test the Network
% outputs = sim(net,inputTest);
%
% errors = gsubtract(outputTest,outputs);
% error = cell2mat(errors);
% for i = 1:10
% error(i)=abs(error(i));
% end
% avg_error = sum(error)/10;
Above 5 commands unnecessary.
help mae
doc mae
% performance = perform(net,outputTest,outputs)
% % View the Network
% view(net)
%
% % Plots
% figure, plotregression(outputTest,outputs)
% figure, plotresponse(outputTest,outputs)
% figure, ploterrcorr(errors)
Defaults: Above 3 commands unnecessary;
채택된 답변
Walter Roberson
2015년 7월 31일
Neural Networks initialize their weights randomly usually. If you want repeatability you can initialize the weights yourself or you can set the random number generator seed.
댓글 수: 2
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!