How to "retrain" Neural Networks?
조회 수: 1 (최근 30일)
이전 댓글 표시
Hi,
I have an algorithm to forecast time series relying on observed values of the time series in the past. The algorithm is based on several so called experts and based on their performance in the past a convex combination of the experts is used for final prediction.
In the case of Neural Networks, one of the parameters of the experts is the amount of neurons h used. Simplified I have a loop
for i=1:n
net = newfit(inputs(:,1:i),targets(1:i),h);
net.divideParam.trainRatio=75/100;
net.divideParam.valRatio=25/100;
net.trainParam.showWindow=false;
net=train(net,inputs(:,1:i),targets(1:i));
estimate=sim(net,x_eval);
...
end
So in every iteration the network trained only difers a little bit, because only one pair of (inputs,targets) is added for training, the rest remains unchanged. Is there a way to use this fact and accelerate the whole process, like "retraining"?
Thanks
Daniel
댓글 수: 0
답변 (1개)
Greg Heath
2011년 11월 23일
Everytime you call newfit you create a new network with random initial weights. Therefore, try something like
net = newfit(inputs,targets,h);
net.divideParam.trainRatio=75/100;
net.divideParam.valRatio=25/100;
net.trainParam.showWindow=false;
for i=1:n
net = train(net,inputs(:,1:i),targets(1:i));
estimate=sim(net,x_eval);
...
end
Hope this helps.
Greg
참고 항목
카테고리
Help Center 및 File Exchange에서 Image Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!